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Abstract

The general framework of the paper deals with the finite element modelling of mechan-
ical problems involving viscous materials such as bitumen or bituminous concrete. Its aim
is to present a second-order-accurate discrete scheme which remains unconditionally su-
perstable when used for the time discretization of the linear and non-linear viscoelastic
constitutive equations considered. After stating the space- and time-continuous mechan-
ical problem we focus on the time discretization of these equations, considering three
different schemes. For both of them sufficiently small values of the time step are required
in order to ensure the superstability, whereas the third remains unconditionally super-
stable. Eventually, some numerical results are presented.

KEY WORDS: finite element method; viscous constitutive equations; time-discrete
scheme; stability; superstability

1 Introduction

The general framework of this paper deals with the finite element modelling of mechanical

problems involving viscous materials, such as bitumen or bituminous concrete. These materials

are often used in civil engineering (asphalt pavements, kernels of dams,. . . ) and taking the

rate-dependent component of their behaviour into account is necessary if one wants to lay out

the corresponding structures correctly. Provided one restricts the frame of the study to small

perturbations (i.e. small strains and small displacements), this viscous component can then be

approached1 by linear or non-linear viscoelastic constitutive equations such as those considered

in this paper.

∗Ecole Nationale des Travaux Publics de l’Etat, Département Génie Civil et Bâtiment (URA CNRS 1652),
rue M. Audin, 69518 Vaulx-en-Velin Cedex, France.
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The main difficulty when using such equations for finite element computations lies in their

integration over finite time steps. For that purpose robust time-discrete schemes are needed if

one wants to obtain accurate numerical approximations at a reasonable cost. The term ‘robust’

means here that those schemes remain stable for sufficiently large values of the time step. More

generally speaking, the bringing into play of robust schemes is advisable as soon as unelastic

constitutive laws are considered. That subject has been studied intensively as regards both

rate-dependent and rate-independent equations.2−5 For instance, it is well known that explicit

integration formulae showing good stability properties when used for rate-independent consti-

tutive laws2,3 can turn out to be excessively expensive for rate-dependent ones whenever their

stability regions become too small. A first way of avoiding this drawback consists in using semi-

or fully implicit schemes which bring unconditional stability.4 This leads to solve iteratively a

non-linear system of equations as soon as non-linear constitutive relations are considered. An-

other approach using semi-implicit Runge-Kutta methods has been suggested by Rosenbrock6

in order to increase stability while avoiding fully implicit schemes. Halfway between explicit

and implicit methods are also the forward gradient schemes, which have been successfully im-

plemented in finite element codes when combined with efficient time-stepping strategies.5 But

both Rosenbrock and forward gradient procedures are not, in general, unconditionally stable.

Although some of the viscous constitutive relations considered in the paper are non-linear, its

topic comes within the framework of the first approach. However, it is well known that when

the size ∆t of the step increases some oscillations of the numerical solutions can appear even

if an unconditionally stable scheme is used, such a phenomenon resulting then from a loss

of superstability.7 The main objective of the paper is to present a O(∆t2)-accurate discrete

scheme which does not have this drawback, that is to say, which remains unconditionally su-

perstable (and consequently unconditionally stable) when used for the time discretization of

the viscoelastic constitutive equations considered.

This paper consists of four main sections. The first one is devoted to the statement of the

time-continuous mechanical problem. In addition to the above-mentioned small perturbations,

the transformations of the materially simple continuum Ω are assumed to be quasistatic, and

only the mechanical aspects of the resulting problems are taken into account, which means

that the influence of thermal coupling effects on the behaviour of Ω is not studied in this

paper. Three viscous constitutive models are considered. The first one consists in a non-ageing

anisotropic linear viscoelastic body.8 The other two,9,10 which are isotropic and non-linear, are
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rewritten in a unified form for concision’s sake.

The second section deals with general considerations relating to the weak formulation of the

time-discretized mechanical problem, whereas the third one focuses on the particularly impor-

tant point constituted by the time discretization of the constitutive equations. We first define

both concepts of stability and superstability by considering a linear ordinary differential equa-

tion, and illustrate them by examining three classical Runge-Kutta schemes. Three different

schemes used for the time discretization of the constitutive equations and denoted as S1, S2

and S3, respectively, are then described. The first one,8,11 based upon the assumption of linear

variations of the stresses over the time step, has O(∆t2) accuracy for the models considered.

It remains unconditionally stable, but sufficiently small values of ∆t are required in order to

have the superstability. The second one is the classical θ-scheme, the well-known properties of

which are recalled. Finally the original scheme S3 has O(∆t2) accuracy and is unconditionally

superstable (and consequently unconditionally stable) when used for the time discretization of

the models considered.

Some numerical results are presented in the last section. A set of computations carried out

by using a single four-nodes quadrilateral element for the numerical simulation of homogeneous

axisymmetric triaxial compression tests is first analysed, before dealing with the problem of

the expanding viscoelastic hollow cylinder together with that of the bending viscoelastic beam.

2 The time-continuous mechanical problem

2.1 General considerations

Let Ω be a materially simple continuum, the motion of which is studied over the time interval

[0, T]. As mentioned in the introduction above, the influence of thermal coupling effects on the

behaviour of Ω is not within the scope of this paper, in which only the mechanical aspects of

the problems considered will be tackled. We shall denote as Γ the boundary of Ω, and as n the

outer unit normal to Γ. Ω is assumed to be an open, bounded and simply connected region of

IR3, and its boundary Γ is assumed to be lipschitz-continuous. The successive configurations

of this continuum will be observed with respect to the same fixed orthonormal frame, and we

shall assume small strains and small displacements. Eventually, we consider only quasistatic

problems, for which the acceleration may be ignored. The mechanical problem stated in the

following subsection consists then in determining the history u(t, .) of the displacement field of
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the continuum Ω over the time interval [0, T].

2.2 The space- and time-continuous mechanical problem

Let b(t, .) be the vectorial field at time t of the body forces acting per volume unit in Ω. We

shall denote as Γ1(t) the part of Γ on which we have, at time t, the essential boundary conditions

u |Γ1(t) = ui, where ui(t, .) is the field of the displacements given on Γ1(t), and as Γ2(t) the

part of Γ on which the values of the stress vector are prescribed at the same time. We assume

that Γ1(t) and Γ2(t) constitute, at every time t, a partition of Γ such that Γ1(t) has at least

three points, and we denote as g(t, .) the values of the stress vector given on Γ2(t).

Let now ε(t, .) be the mechanical component of the linearized tensorial field of the small

strains in Ω at time t, and let σ(t, .) be the tensorial field of the Cauchy stresses in Ω at the

same time. This paper focuses on the finite element modelling of geomaterials, such as bitumen

or bituminous concrete, the behaviour of which is described by a linear or non-linear viscoelastic

constitutive law. The constitutive equations considered in this paper, the expressions of which

are detailed in the following subsection, can be written in the concise form

ε̇ = F(σ̇, σ,H) (1)

where ε̇ and σ̇ are the rates of ε and σ, respectively, and where H denotes the set of memory

parameters different from σ.

Then the problem which consists in determining the history u(t, .) of the displacements of Ω

over the time interval [0, T] is governed by the following set of equations

(2.1a) divxσ(t, x) = −b(t, x)
(2.1b) σT(t, x) = σ(t, x)
(2.2) ε̇(t, x) = F (σ̇(t, x), σ(t, x),H(t, x))

 in Ω× ]0, T[

(2.3a) u(t, x) = ui(t, x) on Γ1(t)× ]0, T[
(2.3b) σ(t, x).n = g(t, x) on Γ2(t)× ]0, T[
(2.4a) u(0, x) = u0(x)
(2.4b) σ(0, x) = σ0(x)

}
in Ω

(2)

Equations (2.1a) and (2.1b) arise from the application of the principle of balance of linear

and angular momentum, in the absence of body and surface couples. Equation (2.2) is the

formulation of the constitutive law of the viscous materially simple continuum Ω, under the

assumption of small transformations. The boundary conditions are given by equations (2.3a)

and (2.3b). Finally, the relations (2.4a) and (2.4b) provide initial conditions of the problem.



A superstable time-discrete scheme (August 31, 2022) 5

In the following subsection we give the detailed expression of the viscous constitutive equa-

tions (1).

2.3 The constitutive equations

To begin with we consider a non-ageing anisotropic linear viscoelastic model. Based upon

the assumption of a finite spectral decomposition of the retardation tensor, it generalizes8 the

expression of this decomposition coming from thermodynamical considerations1 by freeing from

the Onsager principle. Its general formulation is given in the following paragraph.

Let (i, j, k, l) ∈ {1, 2, 3}4 be any given set of indices and let εijkl denote the contribution to

the component εij of ε, due to the history of the component σkl of σ.

Then the correspondence between the histories of σkl and εijkl can be represented8 by the

one-dimensional analogical model shown on the figure 1, where the parameters k
(.)
ijkl and η

(.)
ijkl

represent the stiffnesses of the springs and the viscosities of the dash-pots, respectively.

k
(0)
ijkl

k
(1)
ijkl k

(m)
ijkl k

(M)
ijkl

η
(1)
ijkl η

(m)
ijkl η

(M)
ijkl

η
(∞)
ijkl

Figure 1. Analogical model relating to the correspondence between σkl and εijkl

Its constitutive equation relating to time t is given, without any summation on k and l, by

ε̇ijkl (t) =
σ̇kl (t)

k
(0)
ijkl

+
m=M∑
m=1

ε̇
(m)
ijkl (t) +

σkl (t)

η
(∞)
ijkl

(3)

with, if M ∈ IN∗, ∀m ∈ {1, . . . ,M} and without any summation on i, j, k and l

σkl (t) = k
(m)
ijklε

(m)
ijkl (t) + η

(m)
ijkl ε̇

(m)
ijkl (t) (4)

and we shall agree to drop the summation on m in equation (3) if M = 0.

In all the following, ∀(i, j, k, l) ∈ {1, 2, 3}4, ∀m ∈ {1, . . . ,M} and without any summation on

i, j, k and l, we shall put

J
(0)
ijkl =

1

k
(0)
ijkl

J
(∞)
ijkl =

1

η
(∞)
ijkl

J
(m)
ijkl =

1

k
(m)
ijkl

λ
(m)
ijkl =

k
(m)
ijkl

η
(m)
ijkl

(5)
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The general equations of the non-ageing anisotropic linear viscoelastic model are then ob-

tained from (3) and (4), after summation on indices k and l of the various contributions εijkl

to the component εij of ε. We obtain, ∀(i, j) ∈ {1, 2, 3}2,

ε̇ij (t) = J
(0)
ijklσ̇kl (t) +

m=M∑
m=1

ε̇
(m)
ij (t) + J

(∞)
ijkl σkl (t) (6)

where the strains ε
(m)
ij (t), (i, j) ∈ {1, 2, 3}2, m ∈ {1, . . . ,M}, are solutions (if M ∈ IN∗) of the

following equations

ε
(m)
ij (t) =

k=3∑
k=1

l=3∑
l=1

ε
(m)
ijkl (t)

with


∀(k, l) ∈ {1, 2, 3}2 and without any summation on k and l :

ε̇
(m)
ijkl (t)

λ
(m)
ijkl

+ ε
(m)
ijkl (t) = J

(m)
ijkl σkl (t)

(7)

Let us now focus on the non-linear viscoelastic model of Maxwell-Norton-Hoff (e.g. see

Friaâ9) together with a generalization of this model proposed by Di Benedetto10 for describing

the behaviour of bitumen. Both of these models, which are isotropic, have been developed

by their authors for incompressible media, and therefore they cannot be used in their original

form for one-field (displacement or velocity) finite element computations. To avoid to resort

to a two-fields finite element formulation, we suggest to modify the elastic component of these

models in order to make it slightly compressible, whereas the unchanged viscous one keeps its

incompressible feature.

The constitutive equations relating to the thus modified Maxwell-Norton-Hoff model are then

as follows

ε̇(t) =
1− 2ν

E
σ̇m(t)I2 +

1 + ν

E
ṡ(t) +

(
1

η0

+
‖s(t)‖α

η

)
s(t) (8)

where E > 0, ν ∈]− 1, 1/2[, η0 > 0, η > 0 and α > 0 are the five parameters of the model, and

where I2 denotes the second-order unit tensor, s denotes the deviatoric part of the Cauchy stress

tensor σ, defined by s = σ − σmI2 with 3σm = trσ, and ‖s‖ is the Euclidian norm of s defined

by ‖s‖ =
√

sijsij. A nearly incompressible behaviour will be obtained when ν = 1/2− νε, for

sufficiently small values of the strictly positive constant νε.

As to the modified model of Di Benedetto, it is given by the following expression

ε̇(t) =
1− 2ν

E(t)
σ̇m(t)I2 +

1 + ν

E(t)
ṡ(t) +

1

η(t)
s(t) (9)
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with 
E(t) = E1

1 +

(
2
‖s(t)‖

E0

)2
 1

2

E1 =
3

2
E0

η(t) = η1

1 +

(
‖s(t)‖

E0

)2
− 1

2

η1 = 2η0

(10)

where E0 > 0, ν ∈]− 1, 1/2[ and η0 > 0 are the three parameters of the model. As for the

previous model a nearly incompressible behaviour will be obtained by taking ν = 1/2− νε with

small νε > 0. Note that, eventually, the non-linear models given by equations (8), (9) and (10)

are two particular forms of the more general one obtained from the constitutive equations (9)

of Di Benedetto by replacing the previous expressions (10) of E and η by the following ones

E(t) = E1

1 + αe

(
‖s(t)‖

E0

)βe
γe

E1 =
3

2
E0

η(t) = η1

1 + αv

(
‖s(t)‖

E0

)βv
−γv

η1 = 2η0

(11)

in which αe, βe, γe, αv, βv and γv are six given positive constants. For concision’s sake only

this unified non-linear model defined by relations (9) and (11) will be considered in the rest of

the paper.

3 Weak formulation of the time-discretized mechanical

problem

Let N ∈ IN∗ and let t0, t1, . . . , tN be an increasing sequence of time values, such that t0 = 0 and

tN = T. In the following we are interested in the displacement fields u(tn, .) relating to the time

values tn, n ∈ {1, . . . , N}. We put, ∀n ∈ {0, . . . , N} and ∀x ∈ Ω, un(x) = u(tn, x), as well as

analogous notations for σ, ε, b, g and ui, and we denote as ∆tn the time increment tn − tn−1,

n ∈ {1, . . . , N}. This section is devoted to the weak formulation of the time-discretized mechan-

ical problem, whereas the following one focuses on the particularly important point constituted

by the time discretization of the constitutive equations (6), (7), (9) and (11). The developments

relating to this point which will be described below lead, for any given n ∈ {1, . . . , N} and

x ∈ Ω, to the following formal relation

εn(x) = Hnx (σn(x),Hnx) (12)

where Hnx denotes the set of memory parameters different from σn(x) at point x and at time

tn, including especially εn−1(x) and σn−1(x). The tensorial function Hnx, which is always linear
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with respect to σn(x) if one considers the linear viscoelastic model given by relations (6) and (7),

but which becomes non-linear when another scheme than a fully explicit one is chosen for the

time discretization of the constitutive equations (9) and (11), is assumed to be one-to-one

according to the principle of determinism. So we can write, formally,

σn(x) = H−1
nx (εn(x),Hnx) (13)

Let now H1(Ω) be the Sobolev space of real square-integrable functions defined on Ω with

square-integrable first-order generalized derivatives, and let V = (H1(Ω))
3
. For any given

n ∈ {1, . . . , N} we denote as Vn the closed subspace of V of the functions v ∈ V such that

v |Γ1(tn) = 0. Let us then consider the inner product of v ∈ Vn and the equation (2.1a) obtained

for t = tn and integrate the resulting expression on Ω. Thus, after integration by parts and use

of the Gauss integral identity, and taking into account the previous relation (13) together with

the boundary conditions (2.3b) at time tn, we obtain the classical weak formulation (Pnv) of

the time-discretized mechanical problem relating to time tn

(Pnv)


Find un ∈ V such that∫

Ω

H−1
nx (ε(un),Hnx) : ε(v) dΩ =

∫
Ω

bn.v dΩ +
∫

Γ2(tn)

gn.v dΓ ∀v ∈ Vn

un = uin on Γ1(tn)

(14)

where the operator ε is defined by ε(.) =
(
gradx(.) + gradT

x (.)
)
/2.

The variational problem (Pnv) can then be solved by the finite element method after building a

finite element space Vh ⊂ V . As mentioned above for (Pnv) the problem (Pnh) coming from the

finite element space discretization remains always linear if one considers the linear viscoelastic

model given by relations (6) and (7), but becomes non-linear when another scheme than a fully

explicit one is chosen for the time discretization of the constitutive equations (9) and (11). Since

in this last case the rheological non-linearities can increase greatly, the iterative resolution of

(Pnh) is carried out by using the robust Newton method. If u(r)
n is the approximation coming

from the resolution of the linearized problem (P
(r)
nh) relating to the iteration (r), then (P

(r+1)
nh )

takes the following form

(P
(r+1)
nh )



Find u(r+1)
n ∈ Vh such that ∀v ∈ Vh ∩ Vn∫

Ω

ε(v) : G−1
nx

(
σ(r)

n ,Hnx

)
: ε(u(r+1)

n ) dΩ =
∫

Γ2(tn)

gn.v dΓ

+
∫
Ω

(
ε(v) :

(
G−1

nx

(
σ(r)

n ,Hnx

)
: Hnx

(
σ(r)

n ,Hnx

)
− σ(r)

n

)
+ bn.v

)
dΩ

u(r+1)
n = uin on Γ1(tn)

(15)
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where Gnx is the gradient tensor of Hnx. If, for simplicity’s sake, we omit the subscripts n and

x, then the components of the fourth-order tensor G = gradσ(H) are given by

∀(i, j, k, l) ∈ {1, 2, 3}4 Gijkl =
∂Hij

∂σkl

(16)

Finally the stop of iterations is governed by the following test∣∣∣∣∣σ(r+1)
n − σ(r)

n

σ
(r)
n

∣∣∣∣∣ ≤ e(tol) (17)

where e(tol) has a sufficient small value, for instance e(tol) = 10−6.

We shall now focus, in the following section, on the time discretization of the constitutive

equations (6), (7), (9) and (11).

4 Time discretization of the constitutive equations

The present section is devoted to the time discretization of the constitutive equations given

by (6), (7), (9) and (11). For that purpose three different time-discrete schemes, described

below in three separate subsections, have been implemented in the finite element code ELFIM.8

In each of these subsections the principle of use of the corresponding scheme together with its

accuracy order are first given by considering the following ordinary differential equation

v̇(t) = f (v(t), u(t), u̇(t)) (18)

before applying the scheme considered to the time discretization of the previous constitutive

equations. The real functions u and v of the real variable t which appear in the ordinary

differential equation (18) above play analogous parts, respectively, to those of the tensorial

functions σ and ε of the same variable t involved in the constitutive equations. However,

some properties of the schemes studied, such as accuracy, but also, concerning one of them, its

very principle of implementation, are strongly linked to the particular forms of such equations

as (18) corresponding to the various viscoelastic bodies. So, in the following subsections, it

will be necessary for us to resort to these particular forms. For instance let us note that the

function f defining the differential equation (18) does not depend on v as concerns the various

Maxwell one-dimensional bodies of the linear viscoelastic model, the constitutive equations of

which are obtained from (3) by setting M = 0. We then get

v̇(t) = f (u(t), u̇(t)) = au(t) + bu̇(t) (19)



A superstable time-discrete scheme (August 31, 2022) 10

where the non-zero constants a and b have the same sign. This particularity holds also if one

considers the unified non-linear viscoelastic model given by equations (9) and (11), for which

we have

v̇(t) = f (u(t), u̇(t)) = a (u(t)) u(t) + b (u(t)) u̇(t) (20)

Finally f is dependent on v but not on u̇ as regards the constitutive relations (4) of the

Kelvin-Voigt one-dimensional bodies involved in the linear viscoelastic model, for which we

obtain

v̇(t) = f (u(t), v(t)) = −av(t) + bu(t) (21)

where a is a strictly positive constant.

In each of the corresponding subsections we shall also state the stability and superstability

properties of the three schemes studied by considering the linear ordinary differential equation ẏ(t) = −y(t)

τ
t > 0

y(0) = y0

(22)

with given τ > 0 and y0. Note that this equation can be obtained from (19) by setting u = y,

u(0) = y0, ba−1 = τ and v(t) = v0 ∀t ≥ 0, and also from (21) when v = y, v(0) = y0, a−1 = τ

and u(t) = 0 ∀t > 0. If one adopts a physical point of view, it corresponds in the first case

to a relaxation test with a Maxwell body and in the second one to a recovery test with a

Kelvin-Voigt body.

But to begin with we shall define both concepts of stability and superstability, in the first

subsection and for the same equation (22), before illustrating them by considering two explicit

Runge-Kutta schemes together with a non-explicit one.

4.1 Preliminary definitions

Let us consider the linear ordinary differential equation (22). In all this subsection we shall

denote as ∆t the time step ∆tn = tn − tn−1 (which is assumed to be constant for the sake of

simplicity), as ρ the ratio ρ = ∆t/τ , and as (S) a given time-discrete scheme the use of which

leads to the following numerical approximation yn of y(tn)

yn = y0 (λ(ρ))n n ∈ IN∗ (23)
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We then have the

Definition 1 We say that the discrete approximation (23) is stable (resp. superstable) for a

given ρ > 0 if |λ(ρ)| ≤ 1 (resp. if λ(ρ) ∈ [0, 1]). Moreover, if the previous property holds ∀ρ > 0

we say that this approximation is unconditionally stable (resp. unconditionally superstable).

Let us now illustrate this definition by considering the classical fourth-order fully explicit

Runge-Kutta scheme.12 The principle of use of this scheme for the numerical resolution of the

ordinary differential equation

ẏ(t) = f (y(t)) (24)

is given by 

yn,1 = yn

yn,2 = yn +
h

2
f(yn,1)

yn,3 = yn +
h

2
f(yn,2)

yn,4 = yn + hf(yn,3)

yn+1 = yn +
h

6
(f(yn,1) + 2f(yn,2) + 2f(yn,3) + f(yn,4))

(25)

and leads, as concerns equation (22), to approximation (23) with

λ(ρ) = 1− ρ +
ρ2

2
− ρ3

6
+

ρ4

24
(26)

The variations of the function ρ → λ(ρ) with ρ > 0 show that both stability and superstability

are ensured as soon as ρ ∈]0, ρ1] with ρ1 = 2
3

(
2 + 3

√
43+9

√
29

2
+ 3
√

43−9
√

29
2

)
(ρ1 ≈ 2.785294).

By reconsidering the previous equation (24) the classical fifth-order fully explicit Runge-Kutta

scheme (e.g. see Crouzeix13) is defined as follows

yn,1 = yn

yn,2 = yn +
h

2
f(yn,1)

yn,3 = yn +
h

16
(3f(yn,1) + f(yn,2))

yn,4 = yn +
h

2
f(yn,3)

yn,5 = yn +
h

16
(−3f(yn,2) + 6f(yn,3) + 9f(yn,4))

yn,6 = yn +
h

7
(f(yn,1) + 4f(yn,2) + 6f(yn,3)− 12f(yn,4) + 8f(yn,5))

yn+1 = yn +
h

90
(7f(yn,1) + 32f(yn,3) + 12f(yn,4) + 32f(yn,5) + 7f(yn,6))

(27)

and its use for solving equation (22) gives the approximation (23) with

λ(ρ) = 1− ρ +
ρ2

2
− ρ3

6
+

ρ4

24
− ρ5

120
+

ρ6

1280
(28)
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The study of the variations of this function with ρ > 0 shows that the stability requires

ρ ∈]0, ρ3] with ρ3 ≈ 5.603972, and that ρ ∈]0, ρ1] with ρ1 ≈ 2.629947 or ρ ∈ [ρ2, ρ3] with

ρ2 ≈ 5.116661 is needed in order to obtain superstability.

Let us then deal with the non-explicit Runge-Kutta scheme known as Hammer and

Hollingsworth method.14 When used for solving equation (24) this fourth-order scheme leads

to 

yn,1 = yn +
h

4

(
f(yn,1) +

(
1− 2√

3

)
f(yn,2)

)

yn,2 = yn +
h

4

((
1 +

2√
3

)
f(yn,1) + f(yn,2)

)

yn+1 = yn +
h

2
(f(yn,1) + f(yn,2))

(29)

and in the particular case of equation (22) we once more obtain the approximation (23) with

the following expression of the function λ(ρ)

λ(ρ) =
1− ρ

2
+

ρ2

12

1 +
ρ

2
+

ρ2

12

(30)

the variations of which (with ρ > 0) show that unconditional superstability is ensured.

Note that the previous results relating to the numerical approximation of equation (22) could

have been anticipated. And indeed it is well known, for such kind of equation, that certain

conditions are required in order to ensure the stability when fully explicit schemes are used,

whereas unconditional stability can be obtained if one considers semi- or fully implicit ones. We

shall now focus, in the three following subsections, on the three time-discrete schemes imple-

mented in the finite element code ELFIM8 for the discretization of the constitutive equations

given by (6), (7), (9) and (11). According to their order of implementation in the code these

schemes will be denoted as S1, S2 and S3 in all the following,

4.2 The integral scheme S1

The first of those implemented in the finite element code ELFIM, the integral scheme S1 is

based8,11 upon the following

Assumption 1 ∀x ∈ Ω, the variations of the stresses σ(t, x) are linear over each of the time

intervals [tn−1, tn], n ∈ {1, . . . , N}.
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To begin with let us describe the principle of use of these scheme by considering the ordinary

differential equation (18) together with its particular forms (19), (20) and (21) relating to the

various viscoelastic bodies considered. The variations of the function u(t) which plays, for

given x ∈ Ω, an analogous part to that of σ(t, x), are assumed to be linear over each of the

time intervals [tn−1, tn], n ∈ {1, . . . , N}. So the approximations of u and u̇ resulting from this

assumption, which have, respectively, O(∆tn
2) and O(∆tn) accuracy, lead to the following

approximation of equation (18)

v̇(t) = f

(
v(t),

(tn − t)un−1 + (t− tn−1)un

∆tn
,
un − un−1

∆tn

)
t ∈]tn−1, tn[ (31)

Since the function f in equation (18) involves both u and u̇, then the previous approxima-

tion (31) has O(∆tn) accuracy, and the relation between vn and un coming from its resolution

has, on the face of it, O(∆tn
2) accuracy. However we shall see in the following that this relation

as a matter of fact has O(∆tn
3) accuracy for the various viscoelastic bodies considered in this

paper.

Let us first focus on the Kelvin-Voigt one-dimensional bodies involved in the linear viscoelastic

model and given by relations (4). Then equation (18) takes the form (21) which does not depend

on u̇, and its approximation (31) becomes, with O(∆tn
2) accuracy, as follows

v̇(t) + av(t) = b

(
(tn − t)un−1 + (t− tn−1)un

∆tn
,

)
t ∈]tn−1, tn[ (32)

The exact resolution of this ordinary differential equation leads to the following relation

binding vn and un, with O(∆tn
3) accuracy,

vn = e−a∆tnvn−1 +
b

a

[(
1− e−a∆tn

a∆tn
− e−a∆tn

)
un−1 +

(
1− 1− e−a∆tn

a∆tn

)
un

]
(33)

Now if one considers the various Maxwell one-dimensional bodies of the same linear vis-

coelastic model, the constitutive equations of which are obtained from (3) by setting M = 0,

together with the unified non-linear viscoelastic model given by equations (9) and (11), then

equation (18) takes the form (19) or (20), respectively, and the function f becomes independent

on v, so that (31) immediately gives

vn − vn−1 =

tn∫
tn−1

f

(
(tn − t)un−1 + (t− tn−1)un

∆tn
,
un − un−1

∆tn

)
dt (34)

with, on the face of it, O(∆tn
2) accuracy. However, the expression (19) of f relating to the

linear Maxwell bodies shows that the previous relation leads to the exact integration of the
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term bu̇(t), so that we get, for these linear models, O(∆tn
3) accuracy. Its detailed expression,

identical to that obtained by using the well-known Crank-Nicolson scheme (e.g. see Crouzeix13),

is then as follows

vn = vn−1 +
(
b + a

∆tn
2

)
un −

(
b− a

∆tn
2

)
un−1 (35)

Finally relation (34) has also O(∆tn
3) accuracy as concerns the unified non-linear viscoelastic

model, for which the function f is given by (20). And indeed we have, by considering this last

relation, the following estimation of the error e in relation (34) coming from the approximation

of the term b(u(t)u̇(t)

e =

tn∫
tn−1

[
b (u(t)) u̇(t)− b

(
(tn − t)un−1 + (t− tn−1)un

∆tn

)
un − un−1

∆tn

]
dt

=

tn∫
tn−1

b

(
(tn − t)un−1 + (t− tn−1)un

∆tn

)(
u̇(t)− un − un−1

∆tn

)
dt +O(∆tn

3)

=

tn∫
tn−1

b (un−1)
(
u̇(t)− un − un−1

∆tn

)
dt +O(∆tn

3)

= O(∆tn
3)

(36)

Now let us study the stability and superstability properties of scheme S1 when applied to

the numerical resolution of equation (22). For that purpose the variations of the function y(t)

are assumed to be linear over each of the time intervals [tn−1, tn], n ∈ {1, . . . , N}, and the time

steps ∆tn are assumed to be constant for the sake of simplicity. So, after putting ∆t = ∆tn

and ρ = ∆t/τ , we get the approximation (23) of y(tn) with

λ(ρ) =
1− ρ

2

1 +
ρ

2

(37)

This approximation, which could be obtain from (35) by setting u = y, u(0) = y0,

v(t) = v0 ∀t ≥ 0 and ba−1 = τ , is identical to the one coming from the Crank-Nicolson scheme,

so that the unconditional stability is ensured whereas ρ ∈]0, 2] is required for superstability.

Now we shall focus on the time discretization of the constitutive equations given by (6), (7),

(9) and (11). Let us first consider the linear viscoelastic model given by (6) and (7). Then,

omitting the space variable x and taking into account relations (19), (21), (33) and (35) together

with (6) and (7), the use of the scheme S1 for the time discretization of those constitutive

equations leads to the following expression of the formal relation (12)

εn = Hn (σn,Hn) = Mn : σn + ε̃n (38)
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where the components of the fourth-order tensor Mn together with those of the second-order

tensor ε̃n are given8,11 by the following relations (39) and (40), respectively,
∀(i, j, k, l) ∈ {1, 2, 3}4 and without any summation on i, j, k and l :

Mnijkl = J
(0)
ijkl +

m=M∑
m=1

J
(m)
ijkl

1− 1− e−λ
(m)
ijkl

∆tn

λ
(m)
ijkl∆tn

+ J
(∞)
ijkl

∆tn
2

(39)



∀(i, j) ∈ {1, 2, 3}2 and without any summation on i and j :

ε̃nij = εij(tn−1)−
k=3∑
k=1

l=3∑
l=1

m=M∑
m=1

(
1− e−λ

(m)
ijkl

∆tn

)
ε
(m)
ijkl(tn−1)

+
k=3∑
k=1

l=3∑
l=1

σkl(tn−1)

−J
(0)
ijkl +

m=M∑
m=1

J
(m)
ijkl

1− e−λ
(m)
ijkl

∆tn

λ
(m)
ijkl∆tn

− e−λ
(m)
ijkl

∆tn

+J
(∞)
ijkl

∆tn
2


(40)

The tensorial relation (38), which is linear with respect to σn, can then be inverted in order to

obtain (13).

Now we are interested in the unified non-linear viscoelastic model, the constitutive equations

of which are given by (9) and (11). Let then I4 be the fourth-order unit tensor and let C and

A be the fourth-order tensors defined by

C =
−ν

E1

I2 ⊗ I2 +
1 + ν

E1

I4 A =
−1

3
I2 ⊗ I2 + I4 (41)

So, taking into account relations (20) and (34) together with expressions (9) and (11), the

formal relation (12) has the following form

εn = Hn (σn,Hn) =

[
I1C +

∆tn
η1

I3A

]
: (σn − σn−1) +

∆tn
η1

I2sn−1 + εn−1 (42)

in which we have put, after setting z =
t− tn−1

∆tn

I1 =

1∫
0

[
1 +

αe

Eβe
0

(
C1 + C2z + C3z

2
)βe

2

]−γe

dz

I2 =

1∫
0

[
1 +

αv

Eβv
0

(
C1 + C2z + C3z

2
)βv

2

]γv

dz

I3 =

1∫
0

[
1 +

αv

Eβv
0

(
C1 + C2z + C3z

2
)βv

2

]γv

zdz

(43)

with

C1 = sn−1 : sn−1 C2 = 2sn−1 : (sn − sn−1) C3 = (sn − sn−1) : (sn − sn−1) (44)
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Since the tensorial relation (42) is non-linear with respect to σn, we need to exhibit the

gradient Gn of the non-linear tensorial function Hn, the components of which are defined

by (16). If one considers the linearized problem (P
(r+1)
nh ) relating to iteration (r + 1) and given

by (15), then the gradient G(r)
n = Gn(σ(r)

n ,Hn) is given by the following tensorial equality

G(r)
n = I

(r)
1 C +

∆tn
η1

I
(r)
3 A +

[
C :

(
σ(r)

n − σn−1

)]
⊗
[(

I
(r)
12 − I

(r)
13

)
sn−1 + I

(r)
13 s(r)

n

]
+

∆tn
η1

[(
I

(r)
22 − 2I

(r)
23 + I

(r)
33

)
sn−1 ⊗ sn−1 + I

(r)
33 s(r)

n ⊗ s(r)
n

]
+

∆tn
η1

(
I

(r)
23 − I

(r)
33

) [
sn−1 ⊗ s(r)

n + s(r)
n ⊗ sn−1

] (45)

with 

I
(r)
12 =

−αeβeγe

Eβe
0

1∫
0

[
1 +

αe

Eβe
0

(
g(r)(z)

)βe
2

]−γe−1 (
g(r)(z)

)βe
2
−1

zdz

I
(r)
13 =

−αeβeγe

Eβe
0

1∫
0

[
1 +

αe

Eβe
0

(
g(r)(z)

)βe
2

]−γe−1 (
g(r)(z)

)βe
2
−1

z2dz

I
(r)
22 =

αvβvγv

Eβv
0

1∫
0

[
1 +

αv

Eβv
0

(
g(r)(z)

)βv
2

]γv−1 (
g(r)(z)

)βv
2
−1

zdz

I
(r)
23 =

αvβvγv

Eβv
0

1∫
0

[
1 +

αv

Eβv
0

(
g(r)(z)

)βv
2

]γv−1 (
g(r)(z)

)βv
2
−1

z2dz

I
(r)
33 =

αvβvγv

Eβv
0

1∫
0

[
1 +

αv

Eβv
0

(
g(r)(z)

)βv
2

]γv−1 (
g(r)(z)

)βv
2
−1

z3dz

(46)

where the function g(r)(z) is defined by

g(r)(z) = C1 + C
(r)
2 z + C

(r)
3 z2 ∀z ∈ [0, 1] (47)

The subscript (r) attached to the above-defined scalar quantities such as I1, I12, C2, . . . ,

means that their evaluation is made by using the value s(r)
n of sn coming from the resolution of

the linearized problem (P
(r)
nh) relating to the previous iteration (r).

Let us finally point out that relations (42),(43), (45) and (46) above have been established

by considering the unified non-linear viscoelastic model given by equations (9) and (11). These

expressions become simplified if one considers the initial model given by equations (9) and (10),

and more particularly the modified Maxwell-Norton-Hoff model given by equation (8), the

elastic part of which remains linear. The simplified expressions corresponding to these two

models can be found in Royis.15
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4.3 The θ-scheme S2

The classical θ-scheme (e.g. see Crouzeix13), denoted as S2 in the following, is the second of

those implemented in the finite element code ELFIM. Its implementation was made in order

to analyse and compare the accuracy of numerical solutions of finite element computations

obtained by using both schemes S1 and S2.16 The principle of use of the θ-scheme S2, which

consists in a linear combination (depending on the parameter θ ∈ [0, 1]) of the fully explicit and

fully implicit Euler schemes, can be easily described if one considers the ordinary differential

equation (18), for which it leads to the following approximation

vn = vn−1 + ∆tn

[
(1− θ)f

(
vn−1, un−1,

un − un−1

∆tn

)
+ θf

(
vn, un,

un − un−1

∆tn

)]
(48)

If θ = 0 we get the fully explicit Euler scheme, if θ = 1 the fully implicit one and if θ = 1/2

the Crank-Nicolson scheme. It is well known that scheme S2 has O(∆tn
2) accuracy if θ = 1/2,

and O(∆tn) accuracy if not. In other terms the previous approximation (48) has O(∆tn
3)

accuracy if θ = 1/2, and O(∆tn
2) accuracy if not.

On the other hand the use of scheme S2 for the numerical resolution of equation (22) gives, if

one considers constant time steps ∆tn = ∆t and after setting ρ = ∆t/τ , the approximation (23)

of y(tn) with

λ(ρ) =
1− (1− θ)ρ

1 + θρ
(49)

The study of the variations of the previous function ρ → λ(ρ) with ρ > 0 shows that the

stability is unconditional if θ ∈ [1/2, 1], and that the following condition ρ ∈]0, 2
1−2θ

] is needed

if θ ∈ [0, 1/2[. It shows also that the superstability is unconditional only when θ = 1, whereas

the condition ρ ∈]0, 1
1−θ

] is required if θ ∈ [0, 1[.

If we now have a second look at the linear viscoelastic model the constitutive equations of

which are given by (6) and (7), then the θ-scheme S2 like S1 leads to the relation (38). The

components of the fourth-order tensor Mn, together with those of the second-order tensor ε̃n

defining this relation, are given by the following expressions (50) and (51), respectively,
∀(i, j, k, l) ∈ {1, 2, 3}4 and without any summation on i, j, k and l :

Mnijkl = J
(0)
ijkl + θ∆tn

m=M∑
m=1

1

η
(m)
ijkl

(
1 + θλ

(m)
ijkl∆tn

) + J
(∞)
ijkl

 (50)
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∀(i, j) ∈ {1, 2, 3}2 and without any summation on i and j :

ε̃nij = εij(tn−1)−∆tn
k=3∑
k=1

l=3∑
l=1

m=M∑
m=1

λ
(m)
ijkl

1 + θλ
(m)
ijkl∆tn

ε
(m)
ijkl(tn−1)

+
k=3∑
k=1

l=3∑
l=1

σkl(tn−1)

−J
(0)
ijkl + (1− θ)∆tn

m=M∑
m=1

1

η
(m)
ijkl

(
1 + θλ

(m)
ijkl∆tn

)+J
(∞)
ijkl


(51)

and the corresponding tensorial relation, which as in the previous subsection remains linear

with respect to σn, can be easily inverted in order to obtain (13).

As to the unified non-linear viscoelastic model defined by equations (9) and (11), the use of

scheme S2 gives the following expression of the formal relation (12)
εn = Hn (σn,Hn)

= [θI1 + (1− θ)I0]C : (σn − σn−1) +
∆tn
η1

[θJ1sn + (1− θ)J0sn−1] + εn−1
(52)

in which C is defined by (41), whereas I0, I1, J0 and J1 are given by the following expressions
I0 =

1 + αe

(
‖sn−1‖

E0

)βe
−γe

I1 =

1 + αe

(
‖sn‖
E0

)βe
−γe

J0 =

1 + αv

(
‖sn−1‖

E0

)βv
γv

J1 =

1 + αv

(
‖sn‖
E0

)βv
γv (53)

Since the tensorial relation (52) becomes non-linear with respect to σn as soon as θ 6= 0, we

have, as in the previous subsection for scheme S1, to compute the fourth-order gradient tensor

G(r)
n = Gn(σ(r)

n ,Hn) required by the numerical resolution of the linearized problem (P
(r+1)
nh )

given by (15) and relating to iteration (r + 1). Its expression is as follows
G(r)

n =
[
θI

(r)
1 + (1− θ)I0

]
C

+ θ

[
I

(r)
12

[
C :

(
σ(r)

n − σn−1

)]
⊗ s(r)

n +
∆tn
η1

(
J

(r)
1 A + J

(r)
12 s(r)

n ⊗ s(r)
n

)] (54)

where the fourth-order tensor A is defined by (41), whereas I
(r)
12 and J

(r)
12 are given by

I
(r)
12 =

−αeβeγe

Eβe
0

∥∥∥s(r)
n

∥∥∥βe−2

1 + αe


∥∥∥s(r)

n

∥∥∥
E0

βe

−γe−1

J
(r)
12 =

αvβvγv

Eβv
0

∥∥∥s(r)
n

∥∥∥βv−2

1 + αv


∥∥∥s(r)

n

∥∥∥
E0

βv


γv−1 (55)

Let us remind the reader that the subscript (r) attached to any given scalar quantity means

that its evaluation is made by using the value s(r)
n of sn coming from the resolution of the

linearized problem (P
(r)
nh) relating to the previous iteration (r).
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On the other hand, it is obvious that the previous relations (52), (53), (54) and (55), which

have been established by considering the unified non-linear viscoelastic model given by equa-

tions (9) and (11), become simplified if one considers the two initial models given by equa-

tions (8), (9) and (10). These simplified expressions can be found in Royis.15

4.4 The scheme S3

To begin with, let us explain, as in the two previous subsections, the principle of use of these

original scheme by considering the ordinary differential equation (18) together with its particular

forms (19), (20) and (21) relating to the various viscoelastic bodies considered.

In order to ensure both unconditional stability and O(∆tn
2) accuracy of scheme S3 we start

with a backward O(∆tn
3)-accurate Taylor series expansion of vn−1, n ∈ {1, . . . , N}, as follows

vn−1 = vn −∆tnv̇n +
∆tn

2

2
v̈n +O(∆tn

3) (56)

and then we replace v̇n by its expressions coming from (18), and v̈n by the total time derivative

of the same expression. If we choose to denote as D
Dt

the operator of total time derivation, we

then get

vn−1 = vn −∆tnf(vn, un, u̇n) +
∆tn

2

2

D

Dt
f(vn, un, u̇n) +O(∆tn

3) (57)

We still have to obtain a first-order approximation of the total time derivative Df
Dt

of f . The sim-

plest way of doing this consists in using the first-order backward Euler scheme. Unfortunately

this amounts to work with the Crank-Nicolson scheme (i.e. the θ-scheme S2 with θ = 1/2), and

that is the reason why we shall try, in the following, to perform this approximation on the basis

of a total time derivation of f . Consequently, the bringing into play of the scheme described

in this subsection is strongly linked, as shown in the following paragraphs, to the particular

forms (19), (20) and (21) of the equation (18) corresponding to the various viscoelastic bodies

considered.

To begin with let us consider the Kelvin-Voigt one-dimensional bodies involved in the linear

viscoelastic model and given by relations (4), for which f takes the form (21). When putting

this expression together with its time derivative in relation (57) we get

vn−1 = vn −∆tn(−avn + bun) +
∆tn

2

2
(−av̇n + bu̇n) +O(∆tn

3) (58)
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and by using (21) again in order to express v̇n we have

vn−1 = vn −∆tn(−avn + bun) +
∆tn

2

2
(−a(−avn + bun) + bu̇n) +O(∆tn

3)

=

(
1 + a∆tn +

(a∆tn)2

2

)
vn − b∆tn

(
1 +

a∆tn
2

)
un

+
b∆tn

2

2

(
un − un−1

∆tn
+O(∆tn)

)
+O(∆tn

3)

=

(
1 + a∆tn +

(a∆tn)2

2

)
vn −

b∆tn
2

un−1 −
b∆tn

2
(1 + a∆tn)un +O(∆tn

3)

(59)

so that we get, for the models considered, the following O(∆tn
3)-accurate approximation

vn =
b∆tn(1 + a∆tn)un + b∆tnun−1 + 2vn−1

1 + (1 + a∆tn)2
(60)

Let us now deal with the various Maxwell one-dimensional bodies of the same linear vis-

coelastic model, the constitutive equations of which are obtained from (3) by setting M = 0,

and for which equation (18) takes the form (19), and let us adopt the previous approach. We

then get

vn−1 = vn −∆tn(aun + bu̇n) +
∆tn

2

2
(au̇n + bün) +O(∆tn

3)

= vn − a∆tnun + b

(
−∆tnu̇n +

∆tn
2

2
ün

)

+
a∆tn

2

2

(
un − un−1

∆tn
+O(∆tn)

)
+O(∆tn

3)

= vn − a∆tnun + b
(
un−1 − un +O(∆tn

3)
)

+
a∆tn

2
(un − un−1) +O(∆tn

3)

= vn +
(
b− a∆tn

2

)
un−1 −

(
b +

a∆tn
2

)
un +O(∆tn

3)

(61)

and we can observe that the resulting O(∆tn
3)-accurate approximation is identical to the one

given by (35) coming from the integral scheme S1, which, for the linear viscoelastic bodies

considered, coincides with the approximation coming from the Crank-Nicolson scheme. This

is due to the fact that in this case the expression (19) of the function f does not depend on v

anymore. So we need, in order to obtain an original approximation like the (60) one, to swap

the parts of u and v, that is to say, to start with a backward O(∆tn
3)-accurate Taylor series

expansion of un−1, n ∈ {1, . . . , N},

un−1 = un −∆tnu̇n +
∆tn

2

2
ün +O(∆tn

3) (62)

That is in this sense that the bringing into play of the scheme developed in this subsection

is strongly linked to the particular form of the constitutive equations considered. We then
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obtain, after replacing in (62) u̇n and ün by their expressions coming from (19) and from the

time derivative of this same relation,

un−1 = un −
∆tn
b

(−aun + v̇n) +
∆tn

2

2b
(−au̇n + v̈n) +O(∆tn

3) (63)

and by using (19) again in order to express u̇n we have

un−1 = un −
∆tn
b

(−aun + v̇n) +
∆tn

2

2b

(
−a

b
(−aun + v̇n) + v̈n

)
+O(∆tn

3)

=

(
1 +

a∆tn
b

+
1

2

(
a∆tn

b

)2
)

un +
1

b

(
−∆tnv̇n +

∆tn
2

2
v̈n

)

− a

2

(
∆tn
b

)2

v̇n +O(∆tn
3)

=

(
1 +

a∆tn
b

+
1

2

(
a∆tn

b

)2
)

un +
1

b

(
vn−1 − vn +O(∆tn

3)
)

− a

2

(
∆tn
b

)2 (vn − vn−1

∆tn
+O(∆tn)

)
+O(∆tn

3)

=

(
1 +

a∆tn
b

+
1

2

(
a∆tn

b

)2
)

un +
1

b

(
1 +

a∆tn
2b

)
(vn−1 − vn) +O(∆tn

3)

(64)

We then get, for the linear viscoelastic bodies considered, the following O(∆tn
3)-accurate

approximation

vn = vn−1 +

(
2b + 2a∆tn +

(a∆tn)2

b

)
un − 2bun−1

2 +
a∆tn

b

(65)

Finally let us consider the unified non-linear viscoelastic model given by equations (9)

and (11), for which equation (18) takes the form (20). In the following, for the sake of simplicity

and ∀n ∈ {0, . . . , N}, we shall put an = a(un), bn = b(un), ȧn = D
Dt

a(un) and ḃn = D
Dt

b(un). So,

by starting in the same way as for the previous Maxwell one-dimensional bodies we obtain the

following relation 
un−1 = un −

∆tn
bn

(−anun + v̇n) +
∆tn

2

2bn

(−anu̇n + v̈n)

− ∆tn
2

2bn

(
ȧnun +

ḃn

bn

(−anun + v̇n)

)
+O(∆tn

3)
(66)

in which the last term, induced by the non-linear nature of equation (20), can be approximated

in a simple way as follows
ȧnun +

ḃn

bn

(−anun + v̇n) = ȧnun + ḃnu̇n

=
an − an−1

∆tn
un +

bn − bn−1

∆tn

un − un−1

∆tn
+O(∆tn)

(67)
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Then, from (66) and (67) and by proceding as in the relations (64) above, we have
un−1 =

(
1 +

an∆tn
bn

+
1

2

(
an∆tn

bn

)2
)

un +
1

bn

(
1 +

an∆tn
2bn

)
(vn−1 − vn)

− ∆tn
2bn

(an − an−1) un −
bn − bn−1

2bn

(un − un−1) +O(∆tn
3)

(68)

which leads to the following O(∆tn
3)-accurate approximation

vn = vn−1 +

(
bn + bn−1 + ∆tn(an + an−1) +

(an∆tn)2

bn

)
un − (bn + bn−1)un−1

2 +
an∆tn

bn

(69)

As in the two previous subsections we study the stability and superstability properties of

scheme S3 when applied to the numerical resolution of equation (22). By considering constant

time steps ∆tn = ∆t and after putting ρ = ∆t/τ we once more get the approximation (23) of

y(tn), with the following expression of the function λ(ρ)

λ(ρ) =
1

1 + ρ +
ρ2

2

(70)

This expression, which could be obtained from (65) by setting u = y, u(0) = y0,

v(t) = v0 ∀t ≥ 0 and ba−1 = τ , shows that the unconditional superstability holds.

Let us now apply scheme S3 to the time discretization of the constitutive equations (6) and (7)

relating to the linear viscoelastic model. As for the schemes S1 and S2 previously described the

use of scheme S3 leads to the tensorial relation (38), and the components of the fourth-order

tensor Mn together with those of the second-order tensor ε̃n defining this relation are given,

taking into account relations (19), (21), (65), (60) together with (6) and (7), by the following

expressions (71) and (72), respectively,
∀(i, j, k, l) ∈ {1, 2, 3}4 and without any summation on i, j, k and l :

Mnijkl = J
(0)
ijkl + ∆tn

m=M∑
m=1

1

η
(m)
ijkl

1 + λ
(m)
ijkl∆tn

1 +
(
1 + λ

(m)
ijkl∆tn

)2 + J
(∞)
ijkl

J
(0)
ijkl + J

(∞)
ijkl ∆tn

2J
(0)
ijkl + J

(∞)
ijkl ∆tn

 (71)



∀(i, j) ∈ {1, 2, 3}2 and without any summation on i and j :

ε̃nij = εij(tn−1)−∆tn
k=3∑
k=1

l=3∑
l=1

m=M∑
m=1

λ
(m)
ijkl

2 + λ
(m)
ijkl∆tn

1 +
(
1 + λ

(m)
ijkl∆tn

)2 ε
(m)
ijkl(tn−1)

+
k=3∑
k=1

l=3∑
l=1

σkl(tn−1)

∆tn
m=M∑
m=1

1

η
(m)
ijkl

1

1 +
(
1 + λ

(m)
ijkl∆tn

)2 −
2J

(0)
ijklJ

(0)
ijkl

2J
(0)
ijkl + J

(∞)
ijkl ∆tn


(72)
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If one now considers the unified non-linear viscoelastic model, the constitutive equations of

which are given by (9) and (11), then the formal relation (12) takes, when using scheme S3 and

taking into account relations (20) and (69) together with expressions (9) and (11), the following

form

εn = Hn (σn,Hn) =
I0 + I1

2
C : (σn − σn−1) +

∆tn
η1

[A1sn + A2sn−1] + εn−1 (73)

with

A1 =
J0 +

I1 − I0

2I1

J1 +
∆tn
η1

E1

1 + ν

J2
1

I1

2 +
∆tn
η1

E1

1 + ν

J1

I1

A2 =

I0 + I1

2I1

J1

2 +
∆tn
η1

E1

1 + ν

J1

I1

(74)

where C is defined by (41), whereas I0, I1, J0 and J1 are given by (53). The starting point

for the statement of the previous expression of Hn is given by the following tensorial equality

which can be easily obtained, taking into account the definition (41) of A, from relations (9),

(11), (20) and (68).
I0 + I1

2I1

(σn−1 − σn) =

∆tn
η1

J0 + J1

2I1

C−1 :A +
1

2

(
∆tn
η1

J1

I1

)2

C−1 :A:C−1 :A

: σn

− 1

I1

C−1 :

[
I4 +

1

2

∆tn
η1

J1

I1

A:C−1

]
: (εn − εn−1)

(75)

The expression of the tensorial function Hn given by (73) and (74) then ensues from the

following properties of the fourth-order tensors A and C
(I4 + aA)−1 = I4 −

a

a + 1
A ∀a 6= −1 A : A = A

C−1 : A = A : C−1 =
E1

1 + ν
A C : A = A : C =

1 + ν

E1

A
(76)

As in the two previous subsections this function is non-linear with respect to σn, so that we

need to exhibit the fourth-order gradient tensor G(r)
n = Gn(σ(r)

n ,Hn) required for the numerical

resolution of the linearized problem (P
(r+1)
nh ) given by (15) and relating to iteration (r +1). We

finally obtain 
G(r)

n =
I0 + I

(r)
1

2
C +

I
(r)
12

2

[
C :

(
σ(r)

n − σn−1

)]
⊗ s(r)

n

+
∆tn
η1

[
A

(r)
1 A +

(
G

(r)
1 s(r)

n + G
(r)
2 sn−1

)
⊗ s(r)

n

] (77)
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with 

G
(r)
1 = I

(r)
12

I0J
(r)
1(

I
(r)
1

)2 +
∆tn
η1

E1

1 + ν

J
(r)
1

I
(r)
1

2J0 − 3J
(r)
1

2I
(r)
12 +

∆tn
η1

E1

1 + ν

J
(r)
1

I
(r)
1

2

+ J
(r)
12

I
(r)
1 − I0

I
(r)
1

+
∆tn
η1

E1

1 + ν

4J
(r)
1 − J0

I
(r)
1

+

∆tn
η1

E1

1 + ν

J
(r)
1

I
(r)
1

2

2 +
∆tn
η1

E1

1 + ν

J
(r)
1

I
(r)
1

2

(78)

and

G
(r)
2 = I

(r)
12

− I0J
(r)
1(

I
(r)
1

)2 +
∆tn
2η1

E1

1 + ν

J
(r)
1

I
(r)
1

2

2 +
∆tn
η1

E1

1 + ν

J
(r)
1

I
(r)
1

2 + J
(r)
12

I0 + I
(r)
1

I
(r)
12 +

∆tn
η1

E1

1 + ν

J
(r)
1

I
(r)
1

2
(79)

where I
(r)
12 and J

(r)
12 are given by (55), and subscript (r) has the same meaning as the one stated

in the two previous subsections. Finally let us note that simpler relations than (73), (77), (78)

and (79) are obtained if one considers the two non-linear models given by equations (8), (9)

and (10). The reader will find them in Royis.15

5 Numerical computations

This last main section is devoted to the presentation of some numerical results. To begin with,

we are interested in a set of computations carried out by using a single four-nodes quadrilateral

element for the numerical simulation of homogeneous axisymmetric triaxial compressions tests.

These calculations were first performed on APOLLO-DN3000 workstation (DOMAIN OS) from

a version of the finite element code ELFIM8 running with simple precision, and some of the

corresponding results are shown in Royis.15,17 In the first of the three following subsections

these computations as a whole are reviewed, after renewing them by using the latest version

of ELFIM which runs on HP9000 workstation (UNIX OS) with double precision. Then in the

second one we deal with the problem of the expanding viscoelastic hollow cylinder, whereas the

last subsection is devoted to that of the bending viscoelastic beam.
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5.1 Homogeneous triaxial compression path

Here the performances of the three time-discrete schemes described in the previous section are

compared by considering numerical simulations of homogeneous axisymmetric triaxial compres-

sion tests. In this subsection the sign conventions are those used in soils mechanics (i.e. the

compressive stresses are positive and the tensile ones are negative).

For all the computations the total axial strain εa = 10% is imposed with five equal increments

of 2%. Four values of the constant axial strain rate ε̇a are considered: 10−3s−1, 10−2s−1, 10−1s−1

and 1 s−1. The constitutive equations are those of the unified non-linear viscoelastic model given

by (9) and (11), and the values of the nine parameters defining this model are the same for

all the calculations, except for βv. The eight constant parameters are given by E0 = 867 MPa,

ν = 0.3, η0 = 500 MPa.s, αe = 10, β2 = γe = 2, αv = 106 and γv = 1, whereas βv belongs to the

following set of values: {0.05, 0.1, 0.2, 0.5, 1, 2, 5}. Let us note that all these values are not

issued from physical considerations, but that they have been chosen in order to impart high

non-linearities to the constitutive model, within the frame of the compression path considered.

The numerical simulations have been carried out, for the four values of the axial strain rate ε̇a

and for the seven values of the parameter βv, by using successively scheme S1, scheme S2 with

θ = 1/2 (i.e. the classical Crank-Nicolson scheme) and scheme S3. All these 84 calculations

have been made by considering a single four-nodes quadrilateral element.

Tables 1-4, relating to each of the four values of ε̇a, give, for the three previous schemes and

for the given values of βv, the computed values σ(c)
a of the axial stress σa corresponding to

εa = 10%, together with the number of iterations required by each of the five increments.

As shown in the previous section scheme S1 and scheme S2 with θ = 1/2 are not uncondition-

ally superstable so that they can involve oscillations of the numerical solutions. The figure 2

relating to the extreme values of strain rate ε̇a and of parameter βv illustrates this phenomenon.

In order for these two schemes to be less penalized the previous values of σ(c)
a in tables 1-4 have

been determined, every time such oscillations appeared, by smoothing the last two increments.

As to scheme S3, the values are those coming directly from the computations.
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Table 1. Number of iterations per increment and values of σ(c)
a (MPa): ε̇a = 10−3 s−1

Scheme S1 Scheme S2 with θ = 1/2 Scheme S3

βv nb. of it. σ(c)
a (MPa) nb. of it. σ(c)

a (MPa) nb. of it. σ(c)
a (MPa)

.05 7-2-3-2-3 .39216 10−5 456-3-436-2-434 .38303 10−5 7-1-1-1-1 .39584 10−5

.1 8-2-3-2-3 .93895 10−5 729-36-808-24-800 .89810 10−5 8-1-1-1-1 .95638 10−5

.2 9-3-5-3-5 .43207 10−4 1108-18-1439-39-1380 .39855 10−4 9-1-1-1-1 .44779 10−4

.5 11-4-8-4-8 .12310 10−2 2434-771-2918-319-2549 .10327 10−2 11-1-1-1-1 .13361 10−2

1. 10-5-10-5-10 .34251 10−1 4738-1090-4221-1458-3894 .24306 10−1 10-3-1-1-1 .39383 10−1

2. 7-5-6-5-6 .78185 4400-159-4292-432-4157 .70772 6-4-3-1-1 .88508

5. 3-3-3-3-2 .13692 101 3-2-2-2-2 .13932 101 2-2-2-2-1 .15000 101

Table 2. Number of iterations per increment and values of σ(c)
a (MPa): ε̇a = 10−2 s−1

Scheme S1 Scheme S2 with θ = 1/2 Scheme S3

βv nb. of it. σ(c)
a (MPa) nb. of it. σ(c)

a (MPa) nb. of it. σ(c)
a (MPa)

.05 7-2-3-2-3 .35142 10−4 451-53-425-2-427 .34325 10−4 7-1-1-1-1 .35473 10−4

.1 8-2-3-2-3 .76160 10−4 760-40-807-2-805 .72855 10−4 8-1-1-1-1 .77575 10−4

.2 9-3-5-3-4 .29436 10−3 1134-22-1440-44-1379 .27154 10−3 9-1-1-1-1 .30508 10−3

.5 11-4-7-4-7 .57152 10−2 2571-634-2918-253-2559 .47970 10−2 11-1-1-1-1 .62034 10−2

1. 11-5-10-4-9 .10971 4293-1121-5007-1405-3876 .79595 10−1 11-3-1-1-1 .12567

2. 8-6-8-6-7 .21907 101 6370-1146-5140-784-4609 .21752 101 9-4-3-3-1 .24206 101

5. 3-3-3-2-2 .14991 102 35-12-11-8-5 .14897 102 3-3-3-3-3 .14979 102

Table 3. Number of iterations per increment and values of σ(c)
a (MPa): ε̇a = 10−1 s−1

Scheme S1 Scheme S2 with θ = 1/2 Scheme S3

βv nb. of it. σ(c)
a (MPa) nb. of it. σ(c)

a (MPa) nb. of it. σ(c)
a (MPa)

.05 7-2-3-2-3 .31493 10−3 447-2-434-2-442 .30760 10−3 7-1-1-1-1 .31789 10−3

.1 8-3-4-3-4 .61765 10−3 818-63-804-2-811 .59105 10−3 8-1-1-1-1 .62924 10−3

.2 9-4-5-3-5 .20052 10−2 1027-17-1452-31-1355 .18506 10−2 9-1-1-1-1 .20785 10−2

.5 10-4-7-3-6 .26530 10−1 2416-603-2905-231-2737 .22540 10−1 10-1-1-1-1 .28797 10−1

1. 10-4-8-5-8 .35215 3572-2293-4388-1985-4127 .32610 11-3-1-1-1 .39857

2. 8-6-7-6-6 .51326 101 6481-1191-4146-1695-3634 .52052 101 9-4-3-3-3 .54622 101

5. 3-3-4-4-4 .68725 102 416-2503-2275-1369-770 .69176 102 3-3-4-5-4 .68416 102

Table 4. Number of iterations per increment and values of σ(c)
a (MPa): ε̇a = 1 s−1

Scheme S1 Scheme S2 with θ = 1/2 Scheme S3

βv nb. of it. σ(c)
a (MPa) nb. of it. σ(c)

a (MPa) nb. of it. σ(c)
a (MPa)

.05 6-3-3-3-3 .28212 10−2 441-48-427-43-425 .27565 10−2 7-1-1-1-1 .28488 10−2

.1 7-3-4-3-4 .50077 10−2 813-150-793-104-790 .47947 10−2 7-1-1-1-1 .51039 10−2

.2 8-4-5-4-5 .13650 10−1 781-328-1412-186-1406 .12652 10−1 8-1-1-1-1 .14160 10−1

.5 9-4-6-5-6 .12307 2318-851-2771-486-2662 .11083 9-3-1-1-1 .13368

1. 9-5-7-6-6 .11382 101 3073-2282-4027-1438-3717 .11147 101 9-4-3-1-1 .12615 101

2. 6-5-5-5-4 .11648 102 5492-2411-3174-2299-2639 .11643 102 7-4-3-3-3 .11883 102

5. 3-4-3-4-5 .10833 103 112-1970-3417-1246-712 .11109 103 3-4-3-4-5 .10779 103
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(a) ε̇a = 10−3 s−1 and βv = 0.05

(S1) (S2)

(S3)

(b) ε̇a = 10−3 s−1 and βv = 5

(S1)
(S2)

(S3)

(c) ε̇a = 1 s−1 and βv = 0.05

(S1) (S2)

(S3)

(d) ε̇a = 1 s−1 and βv = 5

(S1)

(S2)

(S3)

Figure 2. Axial stress σ(c)
a versus axial strain εa

For the compression path considered the tables 1-4 show that scheme S3 requires fewer iter-

ations than scheme S1, whereas scheme S2 with θ = 1/2 is the most demanding. The same is

true as regards CPU time. On the other hand reference values σ(r)
a of the axial stress σa have

been determined, for εa = 10% and for each of the values of ε̇a and βv considered, by resolving

the ordinary differential equation satisfied by σa with the first-order fully implicit Euler scheme

and successively 104, 105 and 106 increments, so as to make sure that the first five digits of

these numerical solutions given in the table 5 are accurate.

Table 5. Reference values σ(r)
a (MPa) of σa for ε = 0.1

ε̇ = 10−3 s−1 ε̇ = 10−2 s−1 ε̇ = 10−1 s−1 ε̇ = 1 s−1

βv = .05 .39584 10−5 .35473 10−4 .31789 10−3 .28488 10−2

βv = .1 .95638 10−5 .77575 10−4 .62924 10−3 .51039 10−2

βv = .2 .44779 10−4 .30508 10−3 .20785 10−2 .14161 10−1

βv = .5 .13361 10−2 .62034 10−2 .28798 10−1 .13368
βv = 1. .39382 10−1 .12568 .39857 .12615 101

βv = 2. .88508 .24206 101 .54622 101 .11883 102

βv = 5. .15000 101 .14989 102 .68430 102 .10762 103
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The tables 6 and 7, in which scheme S2 with θ = 1/2 is simply referenced as S2, give the

relative error
∣∣∣∣σ(c)

a −σ
(r)
a

σ
(r)
a

∣∣∣∣ between the computed and reference values of σa, for each of the four

values of the strain rate ε̇a and for the seven values of the parameter βv.

Table 6. Relative errors between σ(c)
a and σ(r)

a : ε̇a = 10−3 s−1 and ε̇a = 10−2 s−1

ε̇a = 10−3 s−1 ε̇a = 10−2 s−1

βv Scheme S1 Scheme S2 Scheme S3 Scheme S1 Scheme S2 Scheme S3

.05 .93 10−2 .32 10−1 < 10−5 .93 10−2 .32 10−1 < 10−5

.1 .18 10−1 .61 10−1 < 10−5 .18 10−1 .61 10−1 < 10−5

.2 .35 10−1 .11 < 10−5 .35 10−1 .11 < 10−5

.5 .79 10−1 .23 < 10−5 .79 10−1 .23 < 10−5

1. .13 .38 .25 10−4 .13 .37 .80 10−4

2. .11 .20 < 10−5 .95 10−1 .10 < 10−5

5. .87 10−1 .71 10−1 < 10−5 .13 10−3 .61 10−2 .67 10−3

Table 7. Relative errors between σ(c)
a and σ(r)

a : ε̇a = 10−1 s−1 and ε̇a = 1 s−1

ε̇a = 10−1 s−1 ε̇a = 1 s−1

βv Scheme S1 Scheme S2 Scheme S3 Scheme S1 Scheme S2 Scheme S3

.05 .93 10−2 .32 10−1 < 10−5 .97 10−2 .32 10−1 < 10−5

.1 .18 10−1 .61 10−1 < 10−5 .19 10−1 .61 10−1 < 10−5

.2 .35 10−1 .11 < 10−5 .36 10−1 .11 .71 10−4

.5 .79 10−1 .22 .35 10−4 .79 10−1 .17 < 10−5

1. .12 .18 < 10−5 .98 10−1 .12 < 10−5

2. .60 10−1 .47 10−1 < 10−5 .20 10−1 .20 10−1 < 10−5

5. .43 10−2 .11 10−1 .20 10−3 .66 10−2 .32 10−1 .16 10−2

They illustrate (for the compression path considered) the accuracy of scheme S3, especially

for the lowest values of parameter βv thus increasing the non-linear feature of the constitutive

model, as shown in the table 8 giving, for the reference stresses σ(r)
a , the values of the non-linear

term αv

(
‖S‖
E0

)βv

appearing in expression (11) of η.

Finally table 9 gives, for the same reference stresses, the values of ratio ρ similar to that

introduced in the previous section and defined by ρ = ∆t/τ , where ∆t = 0.02/ε̇a is the time

step and τ the relaxation time obtained by τ = 3
2
η/E from the expressions (11) of E and η.

These values of ρ together with the considerations made in the previous section account for the

oscillating behaviour of the numerical solutions coming from schemes S1 and S2.
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Table 8. Values of the non-linear term αv

(
‖S‖
E0

)βv

for the reference stresses σ(r)
a

ε̇ = 10−3 s−1 ε̇ = 10−2 s−1 ε̇ = 10−1 s−1 ε̇ = 1 s−1

βv = .05 .37894 106 .42286 106 .47186 106 .52654 106

βv = .1 .15684 106 .19336 106 .23838 106 .29389 106

βv = .2 .33497 105 .49167 105 .72167 105 .10593 106

βv = .5 .11217 104 .24170 104 .52077 104 .11220 105

βv = 1. .37088 102 .11835 103 .37535 103 .11880 104

βv = 2. .69476 .51967 101 .26461 102 .12523 103

βv = 5. .56251 10−8 .56048 10−3 .11115 101 .10695 102

Table 9. Values of the ratio ρ = ∆t/τ for the reference stresses σ(r)
a

ε̇ = 10−3 s−1 ε̇ = 10−2 s−1 ε̇ = 10−1 s−1 ε̇ = 1 s−1

βv = .05 .65709 107 .73323 106 .81820 105 .91302 104

βv = .1 .27196 107 .33529 106 .41336 105 .50961 104

βv = .2 .58085 106 .85257 105 .12514 105 .18368 104

βv = .5 .19468 105 .41929 104 .90319 103 .19457 103

βv = 1. .66045 103 .20696 103 .65259 102 .20619 102

βv = 2. .29388 102 .10746 102 .47643 101 .21943 101

βv = 5. .17341 102 .17419 101 .39718 .24659

5.2 Expanding viscoelastic hollow cylinder

In this subsection we are interested in the expanding viscoelastic hollow cylinder shown on the

figure 3. The problem is studied over the time interval [0, T], and the boundary conditions

relating to time t ∈ [0, T] are given in this figure.

r0 r1 = 10r0

r

z

A D

B C

Nodes (displacement)
Reference Gauss-points

P1
P2 P3

uz = 0 and σθz = σrz = 0 on AD ∪ BC
ur = v0t and σrθ = σrz = 0 on AB
ur = v1t and σrθ = σrz = 0 on CD

Boundary conditions for t ∈ [0, T]

Figure 3. Expanding viscoelastic hollow cylinder
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The behaviour of the viscoelastic cylinder is described by an isotropic Maxwell model, the

constitutive equations of which are as follows

ε̇(t) =
−ν

E
trσ̇(t)I2 +

1 + ν

E
σ̇(t) +

−ν

η
trσ(t)I2 +

1 + ν

η
σ(t) (80)

Using cylindrical coordinates (r, θ, z) the only non-zero component ur of the displacement

field u does not depend on z and is given by

ur(t, r) =

(
v1r1 − v0r0

r2
1 − r2

0

r +
v0r1 − v1r0

r2
1 − r2

0

r0r1

r

)
t (81)

For v1 = v0r0/r1 = v0/10 this exact solution is identical to that of the problem of the expand-

ing infinite viscoelastic hollow cylinder (r1 = +∞). By restricting the study to this particular

expression of v1 we get the following expressions of the non-zero components of u, ε and σ
ur(t, r) =

r0

r
v0t

εrr(t, r) = −εθθ(t, r) = −r0

r2
v0t

σrr(t, r) = −σθθ(t, r) = − η

1 + ν

r0

r2
v0

(
1− exp

(−t

τ

)) (82)

where τ = η/E stands for relaxation time.

21 numerical computations have been carried out by considering as in the previous subsection

scheme S1, scheme S2 with θ = 1/2 and scheme S3 together with seven different values of

the constant time step: ∆t = T/N with N ∈ {1, 2, 5, 10, 20, 50, 100}. All these simulations

have been performed by using the same mesh composed of nine 12-nodes (cubic) quadrilateral

elements of the ‘serendipity’ family (see figure 3), and for the various parameters the following

values: T = 10 s, r0 = 1 m, v0 = 10−2 ms−1, E = 1000 MPa, ν = 0.3 and η = 1000 MPa.s.

As shown in the previous section the use of scheme S1 and scheme S2 with θ = 1/2 for the

time discretization of the constitutive equations (80) leads to the same approximation and

the computations reflect this feature, so that only schemes S1 and S3 are considered in the

following. Three reference Gauss-points denoted as P1, P2 and P3 and shown on figure 3 have

been chosen for the analysis of the numerical results relating to t = T = 10 s. For these three

points, for the two schemes S1 and S3 and for the seven values of the time step ∆t the table 10

gives the relative error
∣∣∣∣σ(c)

rr −σ
(e)
rr

σ
(e)
rr

∣∣∣∣ between the computed values σ(c)
rr of the radial stress σrr and

the exact ones σ(e)
rr , whereas the same analysis is made in table 11 for the orthoradial stress σθθ.
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Table 10. Relative errors between σ(c)
rr and σ(e)

rr for t = 10 s
Gauss-point P1 Gauss-point P2 Gauss-point P3

∆t (s) Scheme S1 Scheme S3 Scheme S1 Scheme S3 Scheme S1 Scheme S3

.1 .85 10−1 .85 10−1 .40 10−1 .40 10−1 .12 10−1 .12 10−1

.2 .85 10−1 .85 10−1 .40 10−1 .40 10−1 .12 10−1 .12 10−1

.5 .85 10−1 .85 10−1 .40 10−1 .40 10−1 .12 10−1 .12 10−1

1. .85 10−1 .85 10−1 .40 10−1 .40 10−1 .12 10−1 .12 10−1

2. .85 10−1 .85 10−1 .40 10−1 .40 10−1 .11 10−1 .12 10−1

5. .11 .82 10−1 .22 .43 10−1 .19 .14 10−1

10. .81 .67 10−1 .60 .56 10−1 .65 .28 10−1

Table 11. Relative errors between σ
(c)
θθ and σ

(e)
θθ for t = 10 s

Gauss-point P1 Gauss-point P2 Gauss-point P3
∆t (s) Scheme S1 Scheme S3 Scheme S1 Scheme S3 Scheme S1 Scheme S3

.1 .13 .13 .39 10−1 .39 10−1 .12 10−1 .12 10−1

.2 .13 .13 .39 10−1 .39 10−1 .12 10−1 .12 10−1

.5 .13 .13 .39 10−1 .39 10−1 .12 10−1 .12 10−1

1. .13 .13 .39 10−1 .39 10−1 .12 10−1 .12 10−1

2. .13 .13 .39 10−1 .39 10−1 .12 10−1 .12 10−1

5. .77 10−1 .13 .22 .42 10−1 .19 .15 10−1

10. .89 .11 .60 .55 10−1 .65 .28 10−1

These relative errors illustrate the considerations of the previous section relating to the su-

perstability properties of the schemes considered. And indeed the relative errors coming from

the scheme S1 increase strongly when the ratio ρ = ∆t/τ becomes greater than 2 (here the

values of ρ and ∆t are identical since τ = η/E = 1 s), whereas those coming from scheme S3

are slightly modified by the raising of the time step size.

On the other hand, note that for the two schemes and for all the values of ρ less than or

equal to 2, then the relative errors are the same and decrease when r increases. This lies in

the fact that these errors for their most part come from space approximation and not from

time discretization. And indeed the shape functions used for the approximation of the radial

displacement ur are polynomials of degree 3 in r, whereas the exact expression (82) of ur is

inversely proportional to r.

5.3 Bending viscoelastic beam

In this last subsection we consider the bending viscoelastic beam shown on figure 4.

The problem is studied for t ∈ [0, T] and the essential boundary conditions are given by
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u = 0 on AB× [0, T], whereas the vertical load P applied to point C (see figure 4) remains

constant for t ∈ [0, T].

A

B

L = 10h

C h

P

(a) Mesh M1: 40 (2x20) elements
Q8 or Q12

A

B

L = 10h

C h

P

(b) Mesh M2: 160 (4x40) elements
Q8 or Q12

Figure 4. Bending Viscoelastic Beam

The viscoelastic behaviour of the beam is now described by an isotropic Kelvin-Voigt model,

the constitutive equations of which are

σ(t) =
Eν

(1 + ν)(1− 2ν)
trε(t)I2 +

E

1 + ν
ε(t) +

ην

(1 + ν)(1− 2ν)
trε̇(t)I2 +

η

1 + ν
ε̇(t) (83)

According to the theory of continuous beams we shall restrict the study to the case ν = 0, so

that the previous equation (83) becomes

σ(t) = Eε(t) + ηε̇(t) (84)

Let us denote as V (t), t ∈ [0, T], the vertical displacement of point C in the direction of load

P . Then the theory of continuous beams leads to the following expression of V (t)

V (t) =
4PL3

Ebh3

(
1− exp

(−t

τ

))
(85)

where b is the width of the beam and τ = η/E the relaxation time.

The numerical computations have been carried out by considering the two meshes M1 and M2

shown on figure 4 and made up of 40 and 160 square elements, respectively. For both of these

meshes the 8-nodes (quadratic) and 12-nodes (cubic) quadrilateral elements of the ‘serendipity’

family (see again figure 4) have been used successively. In all the following the four resulting

finite element meshes of the beam are denoted as M1Q8, M1Q12, M2Q8 and M2Q12. They have

a total of 320, 520, 1120 and 1840 degrees of freedom, respectively. 48 numerical simulations

have been performed by considering these four meshes, schemes S1, S2 with θ = 1/2 and S3,
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together with four different values of the constant time step: ∆t = T/N with N ∈ {1, 2, 5, 10}.

All these computations have been carried out by using the following values of the various

parameters: T = 10 s, b = h = 1 m, P = 103 kN, E = 12000 MPa and η = 12000 MPa.s.

For the four meshes, for the three schemes S1, S2 and S3 (in all the following the scheme

S2 with θ = 1/2 is simply referenced as S2) and for the four values of the time step ∆t, the

tables 12 and 13 give the relative errors
∣∣∣V (c)−V (a)

V (a)

∣∣∣ between the computed values V (c) of the

vertical displacement V (t) of point C at time t=T=10 s and the analytical ones V (a) at the

same time given by relation (85).

Table 12. Relative errors between V (c) and V (a): Meshes M1Q8 and M1Q12
Mesh M1Q8 Mesh M1Q12

∆t (s) Scheme S1 Scheme S2 Scheme S3 Scheme S1 Scheme S2 Scheme S3

1. .61 10−2 .61 10−2 .60 10−2 .61 10−2 .62 10−2 .61 10−2

2. .61 10−2 .62 10−2 .58 10−2 .61 10−2 .62 10−2 .59 10−2

5. .61 10−2 .18 .32 10−2 .61 10−2 .18 .32 10−2

10. .61 10−2 .68 .10 10−1 .61 10−2 .68 .10 10−1

Table 13. Relative errors between V (c) and V (a): Meshes M2Q8 and M2Q12
Mesh M2Q8 Mesh M2Q12

∆t (s) Scheme S1 Scheme S2 Scheme S3 Scheme S1 Scheme S2 Scheme S3

1. .62 10−2 .61 10−2 .61 10−2 .63 10−2 .63 10−2 .62 10−2

2. .62 10−2 .62 10−2 .59 10−2 .63 10−2 .63 10−2 .60 10−2

5. .62 10−2 .18 .33 10−2 .62 10−2 .18 .34 10−2

10. .62 10−2 .68 .10 10−1 .62 10−2 .68 .10 10−1

As in the previous subsection for the viscoelastic hollow cylinder the relative errors relating

to scheme S2 increase strongly when the ratio ρ = ∆t/τ becomes greater than 2 (the values of ρ

and ∆t are again identical since τ = η/E = 1 s), whereas the same does not hold for S1 anymore

since the errors coming from this scheme are now independent of the values of ρ ∈ {1, 2, 5, 10}.

On the other hand the relative errors relating to scheme S3 are now a little bit more influenced

by the raising of the time step size than those obtained in the previous subsection for the

viscoelastic hollow cylinder.

This good behaviour of scheme S1 lies in the fact that the components of the Cauchy stress

tensor σ remain time-independent, so that assumption 1 is here exactly satisfied. Let us note

finally that the relative errors above are not much modified by the size of the mesh.
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6 Concluding remarks

Robust time-discrete schemes are needed for the finite element modelling of mechanical prob-

lems involving viscous materials, if one wants to obtain accurate numerical approximations at

a reasonable cost. As to the linear and non-linear viscoelastic constitutive equations considered

in this paper, the second-order scheme denoted as S3 and described in the previous sections

meets this robustness requirement, in the sense that the resulting numerical approximations

remain superstable even when large values of the time step are taken. This unconditional su-

perstability of S3, which is easy to prove if one restricts the study to linear ordinary differential

equations, is illustrated by the numerical results presented in the last section. Nevertheless it is

obvious that other computations are needed in order to confirm the apparent robustness of S3

when used for the numerical integration of the viscoelastic constitutive equations considered.

On the other hand we have to bear in mind that the bringing into play of scheme S3 is strongly

linked to the particular forms of these equations, so that the previous remarks relating to the

robustness of S3 hold only for them and are not directly transposable to other viscous models.
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