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On the well-posedness of some mechanical variational problems
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SUMMARY

The paper aims to establish the existence and uniqueness of the solution of some variational problems
constituting the basis of finite element modellings encountered in mechanics and civil engineering.
And indeed, by expanding to the approximate problems coming from the space discretization, such
theoretical results contribute to strengthen the robustness of the modelling softwares and the quality
of their numerical results. More particularly, three kinds of mixed variational problems involving
rheological non-linearities are considered here : the evolution problems of incompressible continua
(solids or fluids) subjected to quasistatic small transformations, the problems of hydromechanical
coupling and those coming from quasistatic large transformations of continua. Copyright c© 2004
John Wiley & Sons, Ltd.
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1. STATEMENT OF THE PROBLEM

Among the large field that constitute the reflections concerning the quality of finite element
computations in mechanics and civil engineering, the topics relating to the existence and
uniqueness of the solutions of the variational problems constituting the basis of this method
are of great importance. And indeed, by expanding to the approximate problems coming from
the space discretization, such theoretical results contribute to strengthen the robustness of the
modelling softwares and the quality of their numerical results.

So, in this paper we purpose to establish some existence and uniqueness results for the
solution of variational problems constituting the basis of finite element approximations in
mechanics.

The problems considered take the form:

(P )

 Find (λ,µ) ∈ V ×M such that
a(λ,u) − b(u,µ) = l(u) ∀u ∈ V
b(λ,v) + c(µ,v) = h(v) ∀v ∈ M
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2 P. ROYIS

where V and M are two Hilbert spaces with dual spaces V ′ and M ′, respectively,
a : V × V 7→ IR a form linear regarding its second argument but non-linear with respect
to the first one (this non-linearity arises from the rheological features of the continuum),
b : V ×M 7→ IR and c : M ×M 7→ IR two bilinear and continuous forms with continuity
constants cb and cc, respectively, whereas l ∈ V ′ and h ∈ M ′.

2. NOTATIONS — PRELIMINARY RESULT

Let E be a given Hilbert space (for instance V or M) with dual space E′. We denote by (., .)E

the inner product of E, by ‖.‖E the corresponding norm and by ‖.‖E′ the dual norm. Given
g ∈ E′, we denote by g the unique element of E such that (g,w)E = g(w) ∀w ∈ E (Riesz’s
representation theorem). Moreover, we have ‖g‖E = ‖g‖E′ .

Since the form a is linear and continuous with respect to its second argument, there exists
a unique operator A : V 7→ V ′ such that we have, ∀λ ∈ V , Aλ(u) = a(λ,u) ∀u ∈ V . So, we
denote by A : V 7→ V the operator (non-linear like A) which associates to any λ ∈ V the
unique element Aλ ∈ V linked to Aλ by the Riesz’s representation theorem.

Otherwise, we introduce the linear and continuous operators B ∈ L(V ;M ′), tB ∈ L(M ;V ′)
and C ∈ L(M ;M ′) respectively defined by

∀u ∈ V : Bu(µ) = b(u,µ) ∀µ ∈ M
∀v ∈ M : tBv(λ) = b(λ,v) ∀λ ∈ V
∀µ ∈ M : Cµ(v) = c(µ,v) ∀v ∈ M

from which we build, by combining them (as described above for A) with the appropriate
one-to-one mapping of representation, the linear and continuous operators B ∈ L(V ;M),
tB ∈ L(M ;V ) and C ∈ L(M ;M).

Let now K be the kernel of B (or, that is the same, of B), K⊥ the orthogonal set of K in
V and K◦ the polar set of K in V ′.

We have then the

Lemma 1 ([9]) The three following propositions are equivalent.

1. There exists β ∈ IR+? such that inf
µ∈M?

sup
λ∈V ?

b(λ,µ)
‖λ‖V ‖µ‖M

≥ β.

2. The operator B is an isomorphism from K⊥ onto M ′. Moreover, we have ‖Bλ‖M ′ ≥ β‖λ‖V ,
∀λ ∈ K⊥.

3. The operator tB is an isomorphism from M onto K◦. Moreover, we have ‖tBµ‖V ′ ≥ β‖µ‖M ,
∀µ ∈ M .

The inf-sup condition in the proposition 1 of lemma 1 is also known as LBB condition,
where the L in acronym LBB stands for Ladyzhenskaya [10], the first B for Babuška [1] and
the second one for Brezzi [2, 3].

Eventually, we conclude this section by establishing the

Theorem 1. Let E be a Hilbert space, f : E × E 7→ IR and K a closed subspace of E. Assume
that the form f is linear and continuous with respect to its second argument, i.e. that there exists
an operator F : E 7→ E such that f(η,w) = (Fη,w)E ∀(η,w) ∈ E × E. Assume in addition
that F satisfies the two following properties
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ON THE WELL-POSEDNESS OF SOME MECHANICAL VARIATIONAL PROBLEMS 3

1. ∃cf ∈ IR+? : ‖Fη − Fη′‖E ≤ cf‖η − η′‖E ∀(η,η′) ∈ K ×K
2. ∃αf ∈ IR+? : (Fη − Fη′,η − η′)E ≥ αf‖η − η′‖2E ∀(η,η′) ∈ K ×K

Then, ∀g ∈ E′, the problem

(P0)
{

Find η ∈ K such that
f(η,w) = g(w) ∀w ∈ K

has a unique solution η ∈ K.

Proof of theorem 1. Let ρ be a strictly positive constant. We have

f(η,w) = g(w) ∀w ∈ K ⇔ (Fη,w)E = (g,w)E ∀w ∈ K
⇔ (ρg − ρFη + η − η,w)E = 0 ∀w ∈ K
⇔ η = PK(ρg − ρFη + η)

where PK denotes the operator of orthogonal projection onto K. So, let us set, ∀η ∈ K,
Sη = PK(ρg − ρFη + η). The idea is to adjust ρ in order that S be a strict contraction.

Let us notice that ∀(η,η′) ∈ K ×K we have

‖Sη − Sη′‖2E = ‖PK(ρg − ρFη + η)−PK(ρg − ρFη′ + η′)‖2E
≤ ‖(ρg − ρFη + η)− (ρg − ρFη′ + η′)‖2E
= ‖η − η′ − ρ(Fη − Fη′)‖2E
= ‖η − η′‖2E + ρ2‖Fη − Fη′‖2E − 2ρ(Fη − Fη′,η − η′)E

≤ ‖η − η′‖2E(1 + ρ2c2
f − 2ραf )

which gives
‖Sη − Sη′‖E ≤ k‖η − η′‖E ∀(η,η′) ∈ K ×K

with k =
√

1 + ρ2c2
f − 2ραf . Therefore, if ρ ∈]0, 2αf

c2
f
[ then k ∈]0, 1[ and S is a strict

contraction, which establishes the theorem 1.
Note that theorem 1 can also be proved by using the Minty-Browder theorem [12, 4] which is

based on the properties of continuity, monotony and coercivity of the operator F. And indeed,
the condition 1 of theorem 1 involves the continuity of F whereas condition 2 entails both
monotony and coercivity.

3. EXISTENCE AND UNIQUENESS RESULTS

3.1. First class of problems : c = 0L(M×M ;IR)

This first case, with c = 0L(M×M ;IR), corresponds to the set of mechanical problems involving
incompressible continua (solids or fluids) subjected to quasistatic small transformations [9,
14]. For such problems, λ is the unknown field of velocity (or displacement) and µ is
the one of pressure. Otherwise, we have also c = 0L(M×M ;IR) when a two fields mixed
variational formulation is used for modelling quasistatic small transformations of compressible
continua [11]. In that last case λ is the field of the Cauchy’s stresses whereas µ is the one of
displacement.

Let us now establish the
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4 P. ROYIS

Theorem 2. Assume that the bilinear form b satisfies the inf-sup condition of lemma 1.
Assume in addition that ∀(λ1,λ0,λ

′
0) ∈ K⊥ ×K ×K the operator A satisfies the two

following properties

1. ∃ca ∈ IR+? : ‖A[λ1 + λ0]−A[λ1 + λ′0]‖V ≤ ca‖λ0 − λ′0‖V

2. ∃αa ∈ IR+? : (A[λ1 + λ0]−A[λ1 + λ′0],λ0 − λ′0)V ≥ αa‖λ0 − λ′0‖2V
Then, ∀(l, h) ∈ V ′ ×M ′, the problem

(P )

 Find (λ,µ) ∈ V ×M such that
a(λ,u) − b(u,µ) = l(u) ∀u ∈ V
b(λ,v) = h(v) ∀v ∈ M

has a unique solution (λ,µ) ∈ V ×M .

Proof of theorem 2. We first notice that b(λ,v) = h(v) ∀v ∈ M ⇔ Bλ = h. From the
second proposition of lemma 1, there exists a unique λ1 ∈ K⊥ such that Bλ1 = h. Thus,
Bλ = h ⇔ λ = λ0 + λ1 with λ0 ∈ K, so that (P ) is equivalent to the problem

(P11)
{

Find (λ0,µ) ∈ K ×M such that
a(λ0 + λ1,u) − b(u,µ) = l(u) ∀u ∈ V

Now, if (P11) has a solution then λ0 is necessarily a solution of

(P12)
{

Find λ0 ∈ K such that
a(λ0 + λ1,u) = l(u) ∀u ∈ K

So, let us set, ∀(λ0,u) ∈ K ×K, f(λ0,u) = a(λ0 + λ1,u). We obtain then, ∀λ0 ∈ K,
f(λ0,u) = (Fλ0,u)V ∀u ∈ V with Fλ0 = A[λ0 + λ1]. Moreover, the properties 1 and 2
satisfied by the operator A show that we have

‖Fλ0 − Fλ′0‖V ≤ ca‖λ0 − λ′0‖V ∀(λ0,λ
′
0) ∈ K ×K

(Fλ0 − Fλ′0,λ0 − λ′0)V ≥ αa‖λ0 − λ′0‖2V ∀(λ0,λ
′
0) ∈ K ×K

Hence, it follows from theorem 1 that (P12) has a unique solution λ0 ∈ K.
Moreover, a(λ0 + λ1,u) = l(u) ∀u ∈ K ⇔ A[λ0 + λ1]− l ∈ K◦. Thus, the existence and

uniqueness of µ ensues from the third proposition of lemma 1 since the solution (λ0,µ) of (P11)
satisfies the relation tBµ = A[λ0 + λ1]− l. Therefore, (λ = λ0 + λ1,µ) is the unique solution
of (P ), which ends the proof of theorem 2.

3.2. Second class of problems : c is coercive

The second case deals with hydromechanical coupling problems such as consolidation of clays,
for which quasistatic small transformations are again assumed. So, λ is the displacement (or
velocity) field, µ the one of pore pressure and the (nonzero) bilinear form c is now continuous
and coercive [8].

We have then the

Theorem 3. Assume that the continuous and bilinear form c is coercive, i.e. that there exists
a strictly positive constant αc such that c(v,v) ≥ αc‖v‖2M ∀v ∈ M . Assume in addition that
the operator A satisfies the two following properties
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ON THE WELL-POSEDNESS OF SOME MECHANICAL VARIATIONAL PROBLEMS 5

1. ∃ca ∈ IR+? : ‖Aλ−Aλ′‖V ≤ ca‖λ− λ′‖V ∀(λ,λ′) ∈ V × V
2. ∃αa ∈ IR+? : (Aλ−Aλ′,λ− λ′)V ≥ αa‖λ− λ′‖2V ∀(λ,λ′) ∈ V × V

Then, ∀(l, h) ∈ V ′ ×M ′, the problem

(P )

 Find (λ,µ) ∈ V ×M such that
a(λ,u) − b(u,µ) = l(u) ∀u ∈ V
b(λ,v) + c(µ,v) = h(v) ∀v ∈ M

has a unique solution (λ,µ) ∈ V ×M .

Proof of theorem 3. To begin with we set E = V ×M , η = (λ,µ) ∈ E and
w = (u,v) ∈ E. So, E is a Hilbert space when equipped with the inner product
(η,w)E = (λ,u)V + (µ,v)M . Otherwise, we introduce the forms f : E × E 7→ IR and
g : E 7→ IR defined by

f(η,w) = a(λ,u)− b(u,µ) + b(λ,v) + c(µ,v) ∀(η,w) ∈ E × E
g(w) = l(u) + h(v) ∀w ∈ E

Then, the problem (P ) is equivalent to

(P2)
{

Find η ∈ E such that
f(η,w) = g(w) ∀w ∈ E

We first notice that (l, h) ∈ V ′ ×M ′ ⇒ g ∈ E′. And indeed, let cl and ch be the continuity
constants of l and h, respectively. We get then, ∀w = (u,v) ∈ E,

|g(w)| ≤ |l(u)|+ |h(v)| ≤ cl‖u‖V + ch‖v‖M ≤ (cl + ch)‖w‖E

Otherwise we have, ∀(η,w) ∈ E × E,

f(η,w) = a(λ,u)− b(u,µ) + b(λ,v) + c(µ,v)
= (Aλ,u)V − (tBµ,u)V + (Bλ,v)M + (Cµ,v)M

= (Aλ− tBµ,u)V + (Bλ + Cµ,v)M

which shows that f(η,w) = (Fη,w)E ∀(η,w) ∈ E × E, where F : E 7→ E is defined by
Fη = (Aλ− tBµ,Bλ + Cµ) ∀η = (λ,µ) ∈ E. So, it remains only for us to prove that the
operator F satisfies all requirements of theorem 1.

For that purpose let η = (λ,µ) and η′ = (λ′,µ′) be any given elements of E. We have

Fη − Fη′ =
(
(Aλ− tBµ)− (Aλ′ − tBµ′), (Bλ + Cµ)− (Bλ′ + Cµ′)

)
=

(
Aλ−Aλ′ − tB[µ− µ′],B[λ− λ′] + C[µ− µ′]

)
Therefore

‖Fη − Fη′‖2E =
∥∥Aλ−Aλ′ − tB[µ− µ′]

∥∥2

V
+

∥∥B[λ− λ′] + C[µ− µ′]
∥∥2

M

which gives

‖Fη−Fη′‖E ≤
∥∥Aλ−Aλ′− tB[µ−µ′]

∥∥
V

+
∥∥B[λ−λ′]+C[µ−µ′]

∥∥
M

≤
∥∥Aλ−Aλ′

∥∥
V

+‖ tB[µ−µ′]‖V +
∥∥B[λ−λ′]

∥∥
M

+‖C[µ−µ′]‖M

≤ ca

∥∥λ−λ′
∥∥

V
+cb ‖µ−µ′‖M +cb

∥∥λ−λ′
∥∥

V
+cc ‖µ−µ′‖M

≤ (ca + 2cb + cc) ‖η−η′‖E
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6 P. ROYIS

Hence, ‖Fη − Fη′‖E ≤ cf‖η − η′‖E with cf = ca + 2cb + cc.
Otherwise, it follows from the coercivity of c that (Cv,v)M ≥αc‖v‖2M , ∀v∈M . We obtain

then

(Fη − Fη′,η − η′)E =
(
Aλ−Aλ′ − tB[µ− µ′],λ− λ′

)
V

+
(
B[λ− λ′] + C[µ− µ′],µ− µ′

)
M

=
(
Aλ−Aλ′,λ− λ′

)
V

+ (C[µ− µ′],µ− µ′)M

−
(

tB[µ− µ′],λ− λ′
)
V

+
(
B[λ− λ′],µ− µ′

)
M

=
(
Aλ−Aλ′,λ− λ′

)
V

+ (C[µ− µ′],µ− µ′)M

−b(λ− λ′,µ− µ′) + b(λ− λ′,µ− µ′)
=

(
Aλ−Aλ′,λ− λ′

)
V

+ (C[µ− µ′],µ− µ′)M

≥ αa‖λ− λ′‖2V + αc‖µ− µ′‖2M
Thus, (Fη − Fη′,η − η′)E ≥ αf‖η − η′‖2E with αf = min{αa, αc} > 0.
Hence, all requirements of theorem 1 hold and the theorem 3 is established.

3.3. Third class of problems : c is non coercive

Eventually, for large transformations (i.e. large displacements, large strains and large rotations)
of elastoviscoplastic continua, λ is the unknown field of objective stress rate and µ the velocity
one [14, 6, 15]. The bilinear form c remains continuous but turns non-coercive, so that we have
now the

Theorem 4. Assume that the bilinear form b satisfies the inf-sup condition of
lemma 1. Assume in addition that the operator A satisfies, ∀(λ,λ′) ∈ V × V and
∀(λ1,λ0,λ

′
0) ∈ K⊥ ×K ×K, the two following properties

1. ∃ca ∈ IR+? : ‖Aλ−Aλ′‖V ≤ ca‖λ− λ′‖V

2. ∃αa ∈ IR+? : (A[λ1 + λ0]−A[λ1 + λ′0],λ0 − λ′0)V ≥ αa‖λ0 − λ′0‖2V
Finally, assume that cacc

β2 (1 + ca

αa
)<1. Then, ∀(l, h) ∈ V ′ ×M ′, the problem

(P )

 Find (λ,µ) ∈ V ×M such that
a(λ,u) − b(u,µ) = l(u) ∀u ∈ V
b(λ,v) + c(µ,v) = h(v) ∀v ∈ M

has a unique solution (λ,µ) ∈ V ×M .

Proof of theorem 4. Let µ be any given element of M and let us consider the problem

(Pµ)

 Find (Sµ,Tµ) ∈ V ×M such that
a(Sµ,u) − b(u,Tµ) = l(u) ∀u ∈ V
b(Sµ,v) + c(µ,v) = h(v) ∀v ∈ M

It is easy to check that problem (Pµ) has a unique solution (Sµ,Tµ) ∈ V ×M . And indeed,
we only have to apply theorem 2 after replacing h by h− Cµ ∈ M ′ and then c by 0L(M×M ;IR).
From this it follows immediately that (P ) has a unique solution (λ,µ) ∈ V×M if and only if
the mapping T : M 7→ M which associates Tµ with µ has a unique fixed point. Let us show
that this holds as soon as cacc

β2 (1 + ca

αa
)<1.

For that purpose let µ and µ′ be any given elements of M and let (Sµ,Tµ) (resp.
(Sµ′,Tµ′)) ∈ V ×M the unique solution of (Pµ) (resp. (Pµ′)). Since from the second
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ON THE WELL-POSEDNESS OF SOME MECHANICAL VARIATIONAL PROBLEMS 7

proposition of lemma 1 the operator B is an isomorphism from K⊥ onto M ′, there exists
a unique λ1 (resp. λ′1) ∈ K⊥ such that Bλ1 = h−Cµ (resp. Bλ′1 = h−Cµ′ ). Thus, we have
B[λ1−λ′1] = −C[µ−µ′] and therefore ‖C[µ−µ′]‖M ′ = ‖B[λ1−λ′1]‖M ′ ≥ β‖λ1−λ′1‖V , which
gives, taking into account the continuity of the linear operator C,

‖λ1 − λ′1‖V ≤ cc

β
‖µ− µ′‖M (1)

We have then Sµ = λ1 + λ0 (resp. Sµ′ = λ′1 + λ′0 ) with λ0 (resp. λ′0) ∈ K. Moreover,
∀u ∈ K, a(Sµ,u) = a(Sµ′,u) = l(u) which gives, ∀u ∈ K,

a(Sµ,u) = a(Sµ′,u)
⇔ (A[λ0 + λ1],u)V =

(
A[λ′0 + λ′1],u

)
V

⇔
(
A[λ0 + λ1]−A[λ′0 + λ1],u

)
V

=
(
A[λ′0 + λ′1]−A[λ′0 + λ1],u

)
V

So, let us set u = λ0 − λ′0. We get(
A[λ0+λ1]−A[λ′0+λ1],λ0 − λ′0

)
V

=
(
A[λ′0+λ′1]−A[λ′0+λ1],λ0 − λ′0

)
V

so that we obtain, taking into account the properties of the operator A,

αa‖λ0 − λ′0‖2V ≤ ca‖λ1 − λ′1‖V ‖λ0 − λ′0‖V

that is to say
‖λ0 − λ′0‖V ≤ ca

αa
‖λ1 − λ′1‖V (2)

Otherwise, we have A[Sµ]− tB[Tµ] = l (resp. A[Sµ′]− tB[Tµ′] = l ) and thus
A[Sµ]−A[Sµ′] = tB[Tµ−Tµ′], which gives, taking into account the third proposition of
lemma 1, ‖A[Sµ]−A[Sµ′]‖V ′ ≥ β‖Tµ−Tµ′‖M .

We have also ‖A[Sµ]−A[Sµ′]‖V ′ = ‖A[Sµ]−A[Sµ′]‖V ≤ ca‖Sµ− Sµ′‖V so that we get

‖Tµ−Tµ′‖M ≤ ca

β
‖Sµ− Sµ′‖V (3)

Eventually, from Sµ = λ0 + λ1 (resp. Sµ′ = λ′0 + λ′1 ) it follows that

‖Sµ− Sµ′‖V ≤ ‖λ0 − λ′0‖V + ‖λ1 − λ′1‖V (4)

Finally, by combining (1), (2), (3) and (4) we obtain

‖Tµ−Tµ′‖M ≤ k‖µ− µ′‖M

with k = cacc

β2 (1 + ca

αa
), which ends the proof of theorem 4 since the operator T is a strict

contraction as soon as the positive constant k satisfies k < 1.

4. APPLICATION TO GEOMECHANICAL BOUNDARY VALUE PROBLEMS

This section deals with geomechanical boundary value problems coming from the analysis of
quasistatic large transformations (i.e. large displacements, large strains and large rotations)
of elastoviscoplastic materials. The space and time continuous problems considered are first
described. A rate-type weak formulation of the space continuous problems coming from their
time discretization is then performed. Eventually, theorem 4 is used for discussing the existence
and uniqueness of the solution of these variational problems.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2004; 00:1–8
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4.1. Statement of the problem

Let Ω be a materially simple continuum with elastoviscoplastic behaviour, the motion of which
is studied over the time interval [0,T]. We denote by Ωt the configuration of Ω relating to the
time t ∈ [0,T]. We assume that Ωt is an open, bounded and simply-connected region of the
physical space IR3, with Lipschitz-continuous boundary Γt, and we denote by nt the outer
unit normal to Γt. The successive configurations of Ω are observed with respect to the same
fixed orthonormal frame, the time t = 0 being chosen as the reference value. The positions of
the material particles of Ω are given by the vectors X ∈ Ω0 at time t = 0, and by the vectors
x ∈ Ωt at the current time t. The transformation Ft : X → x relating to that time is then a
one-to-one mapping from Ω0 onto Ωt.

Let b(t, .) : Ωt → IR3 be the vector field at time t of the body forces acting per mass unit in
Ωt and let ρ(t, .) : Ωt → IR be the field of mass density relating to that time. We denote by Γt1

the part of Γt on which we have, at time t, the essential boundary conditions u|Γt1 = u1, where
u1(t, .) : Γt1 → IR3 are the values of the displacement u(t, .) given on Γt1, and we denote by
Γt2 the part of Γt on which the values of the stress vector are prescribed at the same time. We
assume that Γt1 and Γt2 constitute, at every time t, a partition of Γt such that Γt1 has at least
three non-aligned points, and we denote by g(t, .) : Γt2 → IR3 the values of the stress vector
given on Γt2. Eventually, we consider only quasistatic problems for which the acceleration may
be ignored.

Let then v(t, .) : Ωt → IR3 be the velocity field of the material body Ω at time t. We denote
by ε(v) the strain rate tensor, symmetric part of the velocity gradient gradx(v), and by ω(v)
the spin tensor, that is to say the skew-symmetric part of gradx(v). We assume that the
behaviour of the continuum Ω is governed by constitutive relations taking the form

ε(v) = H (σ̌,H) + L (H) (5)

where σ̌ is the Jaumann’s objective rate of the Cauchy’s stress tensor σ, H the set of memory
parameters at the material point considered and where the H-dependent tensor L represents
the viscous part of ε(v), whereas H is an H-dependent tensorial function of σ̌, positively
homogeneous of degree one with respect to σ̌ since it describes the rate-independent (i.e. non-
viscous) part of ε(v). This behaviour’s non-viscous component is hypoelastic if H is linear with
respect to σ̌ and anelastic otherwise. In that last case, by setting L = 0 we obtain the class
of classical elastoplastic relations expressing the strain rate tensor ε(v) as a function of the
Jaumann’s objective derivative of the Cauchy’s stresses, but also the set of rate-independent
laws based upon the same principle of expression of ε(v) and called “incremental laws involving
interpolations”, which in particular differ from the previous ones on account of the absence
of an elastic component. In other words, the resulting constitutive equations are irreversible
even for very small stress levels. The use of such laws for describing the non-linear behaviour
of geomaterials such as soils is well established and many rheological models have been issued
from this formalism[7][5][13].

The aim of the following section is to build a sequence of time discretized mixed variational
problems involving both fields of velocity and objective Jaumann’s stress rate, which avoids
the inversion of the constitutive equations (5) while dissociating the time integration of the
various fields from the rate-type finite element computations.
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ON THE WELL-POSEDNESS OF SOME MECHANICAL VARIATIONAL PROBLEMS 9

4.2. Weak formulation of the time discretized problem

Let t0, t1, . . . , tN , N ∈ IN∗, be an increasing sequence of time values such that t0 = 0 and
tN = T. We assume that these values are chosen in such a way that the partition of Γ0

defined by F−1
t (Γt1) and F−1

t (Γt2) remains time independent over each of the intervals
[tn−1, tn[, n ∈ {1, . . . , N}. Since our double aim is to avoid the inversion of the constitutive
equations (5) and dissociate the time integration of the various fields from the rate-type finite
element computations, we take as unknowns of the problem the two fields appearing in these
equations, that is to say the velocity v and the Jaumann’s objective derivative σ̌ of the
Cauchy’s stresses[14]. We are then interested, for n ∈ {0, . . . , N − 1}, in finding the fields v
and σ̌ relating to the time value tn. After solving this problem and independently of it, the
time integration of the various fields is carried out so as to allow the resolution of the problem
relating to time tn+1. In all the following we shall put vn(x) = v(tn, x), ∀n ∈ {0, . . . , N} and
∀x ∈ Ωtn , as well as analogous notations for σ, σ̌, H, b, g, ρ and for the other fields which will
be introduced subsequently. Eventually, we denote by L2 (Ωtn) the space of square integrable
real functions defined on Ωtn

and by H1 (Ωtn
) the Sobolev space of square integrable real

functions defined on Ωtn
with square integrable generalized derivatives of order one.

Let then n ∈ {0, . . . , N − 1}, Vn =
[
L2 (Ωtn)

]9
sym

, Mn =
[
H1 (Ωtn)

]3, and let M0n denote
the closed subspace of Mn constituted by the fields v such that v|Γtn1 = 0. We obtain the first
part of the mixed variational formulation of the time discretized problem relating to time tn
by doing the inner product of s ∈ Vn with the constitutive equations (5) written at that time,
and then by integrating the resulting expression on Ωtn

. So we have∫
Ωtn

H (σ̌n,Hn) :sdΩtn +
∫

Ωtn

L (Hn) :sdΩtn =
∫

Ωtn

s :ε(vn) dΩtn

As to the second part of that formulation, it is obtained by considering an objective time
derivative of the equations coming from the balance principle of linear momentum. The inner
product of this derivative with w ∈ M0n is first performed, before integrating it on Ωtn

. After
integration by parts and use of the Gauss integral identity we obtain, independently of the
objective derivative considered[6][15], the following relation∫

Ωtn

σ̌n :ε(w) dΩtn +
∫

Ωtn

[gradx(vn).σn+σndivx(vn)−ε(vn).σn−σn.ε(vn)] :gradx(w) dΩtn

=
∫

Ωtn

ρnḃn.w dΩtn
+

∫
Γtn2

[ġn + [divx(vn)− ntn
.ε(vn).ntn

]gn] .w dΓtn

where the point above a given field represents the material derivation.
Let now v1

n be the rate of the displacement given on Γtn1, M⊥
0n be the orthogonal set

of M0n in Mn and let v1n be the unique element of M⊥
0n such that v1n|Γtn1 = v1

n. Then
vn = v0n + v1n with v0n ∈ M0n, so that the mixed variational problem (Pn) relating to time
tn takes the following abstract form[6][15]

(Pn)

 Find (σ̌n,v0n) ∈ Vn×M0n such that:
an(σ̌n, s) − bn(s,v0n) = hn(s) ∀s ∈ Vn

bn(σ̌n,w) + cn(v0n,w) = ln(w) ∀w ∈ M0n

(6)
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with

an(σ̌n, s) =
∫

Ωtn

H (σ̌n,Hn) :sdΩtn
(7)

bn(s,v0n) =
∫

Ωtn

s :ε(v0n) dΩtn
(8)

bn(σ̌n,w) =
∫

Ωtn

σ̌n :ε(w) dΩtn (9)

cn(v0n,w) =
∫

Ωtn

[gradx(v0n).σn+σndivx(v0n)−ε(v0n).σn−σn.ε(v0n)] :gradx(w) dΩtn

−
∫

Γtn2

[divx(v0n)− ntn .ε(v0n).ntn ]gn.w dΓtn (10)

and

hn(s) =
∫

Ωtn

−L (Hn) :sdΩtn + bn(s,v1n) (11)

ln(w) =
∫

Ωtn

ρnḃn.w dΩtn +
∫

Γtn2

ġn.w dΓtn − cn(v1n,w) (12)

4.3. Discussion

In this section we purpose to use theorem 4 in order to discuss the existence and the uniqueness
of the solution of problem (Pn).

Note first that (Vn) and (Mn) are Hilbert spaces when equipped with the inner products

(σ, s)Vn
=

∫
Ωtn

σ :sdΩtn
∀(σ, s) ∈ Vn × Vn (13)

and

(v,w)Mn
=

∫
Ωtn

[v.w + gradx(v) :gradx(w)] dΩtn
∀(v,w) ∈ Mn ×Mn (14)

respectively.
Thus, the closed subspace M0n of Mn is also an Hilbert space when equipped with the inner

product of Mn. Otherwise we have, from (13) and (14)

‖w‖2Mn
= ‖w‖2[L2(Ωtn )]3 + ‖gradx(w)‖2Vn

∀w ∈ Mn

which gives

‖w‖[L2(Ωtn )]3 ≤ ‖w‖Mn
∀w ∈ Mn (15)

and

‖gradx(w)‖Vn
≤ ‖w‖Mn

∀w ∈ Mn (16)

We have also, since ε(w) :ω(w) = 0, ∀w ∈ Mn and ∀x ∈ Ωtn
,

‖gradx(w)‖2Vn
= ‖ε(w)‖2Vn

+ ‖ω(w)‖2Vn
∀w ∈ Mn
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and then, taking into account (16),

‖ε(w)‖Vn
≤ ‖w‖Mn

∀w ∈ Mn (17)

Eventually, from the decomposition ε(w) = 1
3divx(w)δ + e(w) of ε(w) into isotropic and

deviatoric parts it follows, since e(w) :δ = 0, ∀w ∈ Mn and ∀x ∈ Ωtn
, that

‖ε(w)‖2Vn
=

1
3
‖divx(w)‖2L2(Ωtn ) + ‖e(w)‖2Vn

∀w ∈ Mn

which gives, with (17)

‖divx(w)‖L2(Ωtn ) ≤
√

3‖w‖Mn ∀w ∈ Mn (18)

Let us now consider the form bn : Vn ×Mn 7→ IR defined by (8) or (9). This form is obviously
bilinear. It is also continuous since we have, taking into account (17),

|bn(s,w)| = | (s, ε(w))Vn
| ≤ ‖s‖Vn

‖ε(w)‖Vn
≤ ‖s‖Vn

‖w‖Mn
∀(s,w) ∈ Vn ×Mn (19)

Hence, the restriction of bn to Vn ×M0n is bilinear and continuous, with continuity constant
cb = 1

Let us then show that the restriction of bn to Vn ×M0n satisfies the inf-sup condition of
lemma 1. Note first that Γtn1 has at least three non-aligned points. Thus, because of the Korn’s
inequality there exists γ ∈ IR+? such that

‖ε(w)‖2Vn
≥ γ‖w‖2Mn

∀w ∈ M0n (20)

which gives, ∀w ∈ ×M?
0n, ε(w) ∈ V ?

n and

sup
s∈V ?

n

b(s,w)
‖s‖Vn‖w‖Mn

= sup
s∈V ?

n

(s, ε(w))Vn

‖s‖Vn‖w‖Mn

≥
(ε(w), ε(w))Vn

‖ε(w)‖Vn‖w‖Mn

=
‖ε(w)‖Vn

‖w‖Mn

≥ √γ

Thus, since ‖w‖M0n
= ‖w‖Mn

∀w ∈ M0n,

inf
w∈M?

0n

sup
s∈V ?

n

b(s,w)
‖s‖Vn‖w‖M0n

≥ √γ

and the inf-sup condition of lemma 1 holds with β =
√

γ > 0.
We are now interested in the form cn : Mn ×Mn 7→ IR given by (10). In order that

the integrals defining that form may be defined, we assume that σn ∈ [L∞ (Ωtn
)]9sym and

gn ∈ [L∞ (Γtn2)]
3. We have then

‖σn‖∞ = inf
{
c ∈ IR+, ‖σn(x)‖ ≤ c for nearly all x ∈ Ωtn

}
and

‖gn‖∞ = inf
{
c ∈ IR+, ‖gn(x)‖ ≤ c for nearly all x ∈ Γtn2

}
where ‖.‖ denotes the euclidian norm.

Note first that like bn the form cn is bilinear. Moreover we have, ∀(v,w) ∈ Mn ×Mn,

|cn(v,w)| ≤ ‖gradx(v).σn+σndivx(v)−ε(v).σn−σn.ε(v)‖Vn
‖gradx(w)‖Vn

+‖divx(v)− ntn
.ε(v).ntn

‖L2(Γtn2)‖gn.w‖L2(Γtn2)

≤ [‖gradx(v).σn‖Vn
+‖σndivx(v)‖Vn

+‖ε(v).σn‖Vn
+‖σn.ε(v)‖Vn

] ‖gradx(w)‖Vn

+‖divx(v)− ntn
.ε(v).ntn

‖L2(Γtn2)‖gn.w‖L2(Γtn2) (21)
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By denoting again as ‖.‖ the euclidian norm we have also, ∀s ∈ Vn, ∀w ∈ Mn and for nearly
all x ∈ Ωtn

,
‖s.σn‖ = ‖σn.s‖ ≤ ‖σn‖∞‖s‖

as well as
‖σndivx(w)‖ ≤ ‖σn‖∞|divx(w)|

Likewise we have, ∀w ∈ Mn and for nearly all x ∈ Γtn2,

|gn.w| ≤ ‖gn‖∞‖w‖

Thus we obtain, ∀s ∈ Vn and ∀w ∈ Mn,

‖s.σn‖Vn = ‖σn.s‖Vn ≤ ‖σn‖∞‖s‖Vn

as well as
‖σndivx(w)‖Vn

≤ ‖σn‖∞‖divx(w)‖L2(Ωtn )

and
‖gn.w‖L2(Γtn2) ≤ ‖gn‖∞‖w‖[L2(Γtn2)]

3

so that the inequality (21) becomes

|cn(v,w)| ≤ ‖σn‖∞
[
‖gradx(v)‖Vn

+‖divx(v)‖L2(Ωtn )+2‖ε(v)‖Vn

]
‖gradx(w)‖Vn

+‖gn‖∞‖divx(v)− ntn
.ε(v).ntn

‖L2(Γtn2)‖w‖[L2(Γtn2)]
3 (22)

Moreover, from the trace theorem there exists ct ∈ IR+? such that, ∀w ∈ Mn,

‖w‖[L2(Γtn2)]
3 ≤ ct‖w‖Mn

(23)

as well as
‖divx(w)− ntn .ε(w).ntn‖L2(Γtn2) ≤ ct‖w‖Mn

Thus we obtain finally, taking into account (16), (17), (18) and (22),

|cn(v,w)| ≤ cc‖v‖Mn
‖w‖Mn

∀(v,w) ∈ Mn ×Mn (24)

with
cc = (3 +

√
3)‖σn‖∞ + c2

t‖gn‖∞ (25)

which ensures the continuity of cn as well as the continuity of its restriction to M0n ×M0n.
Let us now consider the forms hn : Vn 7→ IR and ln : Mn 7→ IR given by (11) and (12),

respectively. These forms are obviously linear and we have, taking into account (15), (19),
(23) and (24)

|hn(s)| ≤ ‖L (Hn) ‖Vn‖s‖Vn + |bn(s,v1n)|
≤ (‖L (Hn) ‖Vn + ‖v1n‖Mn) ‖s‖Vn

as well as

|ln(w)| ≤ ‖ρnḃn‖[L2(Ωtn )]3‖w‖[L2(Ωtn )]3 + ‖ġn‖[L2(Γtn2)]
3‖w‖[L2(Γtn2)]

3 + |cn(v1n,w)|

≤
(
‖ρnḃn‖[L2(Ωtn )]3 + ct‖ġn‖[L2(Γtn2)]

3 + cc‖v1n‖Mn

)
‖w‖Mn
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Hence, hn ∈ V ′
n and ln ∈ M ′

n ⊃ M ′
n0.

Let us now study the form an : Mn ×Mn 7→ IR defined by (7). We have

an(σ̌n, s) = (H (σ̌n,Hn) , s)Vn

so that this form is linear and continuous with respect to its second argument. Moreover, the
operator A of theorem 4 coincides with the rheological operator H. Thus, the conditions 1
and 2 of theorem 4 hold if and only if they are satisfied by this operator. However, they remain
difficult to state except for the case where H is linear with respect to σ̌n. And indeed, the
difficulty lies in the fact that conditions 1 and 2 of theorem 4 are global (in the sense that they
are expressed by the way of integrals on Ωtn

) whereas the constitutive relations (5) are defined
locally (i.e. at each point x of Ωtn

). One can nevertheless try to provide regularity conditions
of these constitutive equations sufficient to ensure that conditions 1 and 2 of theorem 4 hold.

An indeed, let us denote by ‖.‖ the euclidian norm and assume that there exists cH ∈ IR+?

and αH ∈ IR+? such that we have, ∀(σ̌n, σ̌′n) ∈ Vn × Vn and for nearly all x ∈ Ωtn
,

‖H (σ̌n(x),Hn(x))−H (σ̌′n(x),Hn(x)) ‖ ≤ cH‖σ̌n(x),−σ̌′n(x)‖ (26)
(H (σ̌n(x),Hn(x))−H (σ̌′n(x),Hn(x))) : (σ̌n(x),−σ̌′n(x)) ≥ αH‖σ̌n(x),−σ̌′n(x)‖2 (27)

Thus, conditions 1 and 2 of theorem 4 hold with ca = cH and αa = αH .
However, the relations (26) and (27) are sufficient but non necessary conditions since the

global conditions 1 and 2 of theorem 4 can be satisfied even if relations (26) and/or (27) do
not hold.

The last point of the discussion deals with the condition

cacc

β2

(
1 +

ca

αa

)
< 1 (28)

of theorem 4. We have here β2 = γ where γ > 0 is the constant of relation (20) coming from
the Korn’s inequality, so that condition (28) can be also written as

cacc <
γ

1 + ca

αa

(29)

Since we have always γ < 1 and αa ≤ ca, the inequality (29) hold if and only if the product
cacc is sufficiently less than 1. Now the expression (25) of cc shows that the magnitude of this
strictly positive constant is linked to that of the state of stress σn. Likewise, the coincidence
between the operator A of theorem 4 and the rheological operator H together with the
condition 1 of this theorem show that the magnitude of ca is in relation with that of the
components of the tangent matrices defining H at each point x of Ωtn , that is to say with the
magnitude of the inverses of the tangent Young’s moduli E at each point x of Ωtn

. Hence,
since constants ca and cc are defined globally (i.e. by the way of integrals on Ωtn

), the product
cacc can be sufficiently less than 1 if the ratio ‖σn‖

E remains sufficiently small for nearly all
x ∈ Ωtn

.

5. CONCLUSION

In this paper we established some existence and uniqueness results for the solution of variational
problems constituting the basis of finite element approximations encountered in mechanics
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and civil engineering. By expanding to the approximate problems coming from the space
discretization, such theoretical results contribute to strengthen the robustness of the modelling
softwares and the quality of their numerical results.

However, some of the conditions constituting the basis of these results, necessary and
sufficient when linear constitutive equations are used, become difficult to state and lose their
necessary feature when considering non-linear constitutive relations. And indeed, for such
rheological models they can only provide regularity conditions of the constitutive equations
which are sufficient but non necessary to ensure the existence and uniqueness of the solution of
the variational problems considered. So, it is essential to study this last point thoroughly if one
wants to obtain sufficient regularity conditions which are also necessary to the well-posedness
of these problems.
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ès Sciences, Université scientifique et médicale de Grenoble, 1978.
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Recherches, spécialité Mécanique-Energétique, Institut National Polytechnique de Grenoble, 1995.
15. Royis P, Royis H. A rate-type mixed finite element method for large transformations of non-viscous

continua. Mechanics Research Communications 1998; 25(4):467–472.

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2004; 00:1–8
Prepared using nagauth.cls


