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Abstract

The general framework of the paper deals with the finite element modelling of ther-
momechanical problems involving viscous materials. The study focuses on the statement
of constitutive equations describing the thermoviscoplastic behaviour of bituminous con-
crete, as well as on their implementation in a finite element program. After stating the
general equations of the space- and time-continuous problem and the constitutive relations
governing the viscoplastic component of the bituminous concrete behaviour, we deal with
their integration over finite time steps, considering two different schemes. Eventually, two
sets of numerical results are presented. The first one, an homogeneous triaxial test, is used
to compare those schemes, whereas the second one consists of numerical simulations of
real-size experiments performed on a road structure subjected to thermal and mechanical
loadings. By comparing the numerical results with experimental ones, it allows us to test
the finite element code on a more complex and realistic problem.

1 Introduction

The general framework of this paper deals with the finite element modelling of thermo-
mechanical problems involving viscous materials such as bituminous concrete. The need for
precise predictions in civil engineering leads to more and more complex constitutive equations
of geomaterials used in finite element programs. In the particular case of bituminous concrete,
widely used in road construction and other structures, a realistic model must take into account
the thermoviscoplastic component of its behaviour, if one wants to lay out the corresponding
structures correctly.1, 2, 3, 4, 5, 6 The use of viscoplastic constitutive equations for describing the
non-linear and rate-sensitive behaviour of other geomaterials, such as clays, is now well es-
tablished and many rheological models have been issued from this formalism.7, 8, 9 The study
described in this paper focuses on the statement of constitutive equations describing the ther-
moviscoplastic behaviour of bituminous concrete, as well as on their implementation in the
finite element program elfimth developed in previous works for the numerical resolution of
boundary value problems in thermomechanics.10, 11, 12, 13
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The paper consists of three main sections. In each of them, except in subsection 4.1, the
sign conventions of the continuum mechanics will be used for stresses and strains. We shall
then consider that stresses are positive in traction and negative in compression. Consequently,
positive strains represent extensions, whereas negative strains represent contractions. The first
main section is devoted to the statement of the time-continuous thermomechanical problem.
The frame of the study is restricted to small perturbations (i.e. small strains and small dis-
placements) and quasistatic transformations of the materially simple continua considered, and
we assume that the influence of thermodynamical coupling effects on the temperature field are
very weak. The most important part of that first section deals with the description of the ten-
sorial constitutive relations governing the viscoplastic component of the bituminous concrete
behaviour, which are put up on the basis of experimental results obtained by Di Benedetto2, 5

and Yan4, 5 at the lgm (Laboratoire GéoMatériaux) of the entpe (Ecole Nationale des Travaux
Publics de l’Etat, France). More precisely, the statement of those constitutive equations is based
on the geometrical shape of a viscoplastic criterion proposed by Di Benedetto5 from experi-
mental data obtained by Yan4 on cylindrical samples of bituminous concrete, combined with
one-dimensional relations2, 5 giving the breaking axial stresses for axisymmetric triaxial tests
in compression on cylindrical samples of bituminous concrete, with constant lateral stress and
constant axial strain rate.

The second section focuses on the weak formulation od the time-discretized thermomechanical
problem. Taking into account the previous assumption relating to thermodynamical coupling
effects, this problem is divided into a thermal one and a mechanical one, with unilateral cou-
pling. The most important part of that second section is devoted to the time discretization
of the viscoplastic component of the constitutive equations considered. And indeed, the main
difficulty when using such equations for finite element computations lies in their integration
over finite time steps. For that purpose robust time-discrete schemes are needed if one wants to
obtain accurate numerical approximations at a reasonable cost. The term ‘robust’ means here
that those schemes remain stable for sufficiently large values of the time step. More generally
speaking, the bringing into play of robust schemes is advisable as soon as unelastic constitutive
laws are considered. That subject has been studied intensively as regards both rate-dependent
and rate-independent equations.14, 15, 16, 17 For instance, it is well known that explicit integra-
tion formulae showing good stability properties when used for rate-independent constitutive
laws14, 15 can turn out to be excessively expensive for rate-dependent ones whenever their sta-
bility regions become too small. A first way of avoiding this drawback consists in using semi-
or fully implicit schemes which bring unconditional stability.16 This leads to solve iteratively a
non-linear system of equations as soon as non-linear constitutive relations are considered. An-
other approach using semi-implicit Runge-Kutta methods has been suggested by Rosenbrock18

in order to increase stability while avoiding fully implicit schemes. Halfway between explicit
and implicit methods are also the forward gradient schemes, which have been successfully im-
plemented in finite element codes when combined with efficient time-stepping strategies.17 But
both Rosenbrock and forward gradient procedures are not, in general, unconditionally sta-
ble. Although the viscoplastic constitutive relations considered in the paper are non-linear,
the framework of the first approach is chosen. Two different schemes are used for the time
discretization of those constitutive equations: the classical θ-scheme and an original method,
developed in previous works19, 20 for linear and non-linear viscoelastic models, based on a direct
integration of the constitutive equations over finite time steps. The resulting time-discretized
mechanical problems become non-linear when another scheme than the θ-scheme with θ = 0 is
used. Since in this case rheological non-linearities can increase greatly, their iterative resolution



Finite element simulation of the bituminous concrete behaviour. (August 31, 2022) 3

is carried out by using the robust Newton method.

Eventually, the third section presents two sets of numerical examples. The first one, consist-
ing of simulations of homogeneous triaxial tests, is used to compare the different time-discrete
schemes. The second one is the simulation of real-size experiments performed on a road struc-
ture at the lavoc (LAboratoire des Voies de Circulation) of the epfl (Ecole Polytechnique
Fédérale de Lausanne, Switzerland). By comparing the numerical results with experimental
ones, it allows us to test the finite element program on a problem with thermal and mechanical
loadings.

2 The time-continuous thermomechanical problem

2.1 General considerations

Let Ω be a materially simple continuum, the motion of which is studied over the time-interval
[0,T]. We shall denote as Γ the boundary of Ω, and as n the outer unit normal to Γ. Ω is
assumed to be an open, bounded and simply connected region of IR3, and its boundary Γ is
assumed to be lipschitz-continuous. The successive configurations of this continuum will be
observed with respect to the same fixed orthonormal frame, and we shall assume small strains
and small displacements. Eventually we consider only quasistatic problems, for which the accel-
eration may be ignored, and we assume that the influence of thermodynamical coupling effects
on the temperature field are very weak. The problem stated in the two following subsections 2.2
and 2.3 consists then in determining both histories T (t, .) and u(t, .) of the temperature and
displacement fields of the continuum Ω, over the time-interval [0,T].

2.2 The space and time-continuous thermal problem

Let T (t, .) be the absolute temperature field of the continuum Ω at the time t and let q(t, .)
be the vectorial field of heat flux at the same time. We denote as ρ the mass density, as cT
the heat capacity at constant volume, as λT the thermal conductivity of the material, and as
Q(t, .) the field of internal heat generation per unit volume in Ω at time t. We assume that cT
and λT are functions of the absolute temperature T .

On the other hand, we denote as Γ1(t) the part of Γ on which the temperature is imposed at
time t (Dirichlet boundary conditions), as Γ2(t) the part of Γ on which the values of the heat
flux per unit area are prescribed at time t (Neumann boundary conditions), and as Γ3(t) the
part of Γ on which the heat flux per unit area is governed, at the same time, by the convective
surface heat transfer with the ambient medium (Fourier boundary conditions). We assume that
Γ1(t), Γ2(t) and Γ3(t) constitute, at every time t, a partition of Γ such that Γ1(t) has at least
one point, and we denote as Ti(t, .) the values of the temperature imposed on Γ1(t), as ϕ(t) the
values of the heat flux per unit area given on Γ2(t), as hT the convective surface heat transfer
coefficient, and as Ta the temperature of the ambient medium. The convective coefficient hT is
a function of the temperature on Γ3(t).

As mentioned in the previous subsection 2.1, we consider only quasistatic problems, for which
the acceleration may be ignored, and we assume that the influence of thermodynamical coupling
effects on the temperature field are very weak. So the problem which consists in determining the
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history T (t, .) of the temperature of Ω over the time-interval [0,T] is governed by the following
set of equations:

(1.1) divxq(t, x) = Q(t, x)− ρcT Ṫ (t, x)
(1.2) q(t, x) = −λTgradxT (t, x)

}
in ]0,T[× Ω

(1.3a) T (t, x) = Ti(t, x) on ]0,T[× Γ1(t)
(1.3b) q(t, x).n = ϕ(t, x) on ]0,T[× Γ2(t)
(1.3c) q(t, x).n = hT (T (t, x)− Ta) on ]0,T[× Γ3(t)
(1.4) T (0, x) = T0(x) in Ω

(1)

The equation (1.1) arises from the application of the energy balance for conduction dominated
heat flow in an elementary volume dΩ subject to thermal, elastic and viscoplastic training, when
the influence of thermodynamical coupling effects on the temperature field are very weak. The
equation (1.2) is the Fourier heat conduction law. The boundary conditions are given by
equations (1.3a), (1.3b) and (1.3c). Finally, equation (1.4) provides initial conditions of the
problem.

2.3 The space and time-continuous mechanical problem

Let b(t, .) be the vectorial field at time t of the body forces acting per unit volume on Ω.
We shall denote as Γ4(t) the part of Γ on which we have, at time t, the essential boundary
conditions u |Γ4(t) = ui, where ui(t, .) is the field of the displacements given on Γ4(t), and as
Γ5(t) the part of Γ on which the values of the stress vector are prescribed at the same time.
We assume that Γ4(t) and Γ5(t) constitute, at every time t, a partition of Γ such that Γ4(t) has
at least three points, and we denote as g(t, .) the values of the stress vector given on Γ5(t).

Let now ε(t, .) be the linearized tensorial field of the small strains in Ω at time t, and let
σ(t, .) be the tensorial field of the Cauchy stresses in Ω at the same time. This paper focuses
on the finite element modelling of geomaterials, such as bituminous concrete, the behaviour of
which is described by a thermoviscoplastic constitutive law. For that we assume an additive
decomposition of the total strain rate tensor ε̇ into linear elastic, viscoplastic and thermal
components, as follows:

ε̇ = ε̇(e) + ε̇(vp) + ε̇(th) (2)

The linear elastic part is given by
ε̇(e) = C : σ̇ (3)

where C is the classical fourth-order tensor of elastic compliances. The viscoplastic component
is controlled by the following constitutive relation

ε̇(vp) = F(σ, T ) (4)

involving the absolute temperature T . The expression of the tensorial function F, which gener-
alizes the one-dimensional relations obtained by Di Benedetto2, 5 from experimental results of
axisymmetric triaxial tests, will be described in the following subsection 2.4. The third term
on the right-hand side in equation (2), corresponding to the thermal strains, is given by

ε̇(th) = α(T )Ṫ I2 (5)

where Ṫ is the rate of temperature, α(T ) the coefficient of thermal expansion, which is a
function of the absolute temperature T , and where I2 denotes the second-order unit tensor.
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Then the problem which consits in determining the history u(t, .) of the displacements of Ω
over the time interval [0,T] is governed by the following set of equations:

(6.1a) divxσ(t, x) = −b(t, x)
(6.1b) σT(t, x) = σ(t, x)
(6.2) ε̇(t, x) = C : σ̇(t, x) + F (σ(t, x), T (t, x))

+ α (T (t, x)) Ṫ (t, x)I2

 in ]0,T[× Ω

(6.3a) u(t, x) = ui(t, x) on ]0,T[× Γ4(t)
(6.3b) σ(t, x).n = g(t, x) on ]0,T[× Γ5(t)
(6.4a) u(0, x) = u0(x)
(6.4b) σ(0, x) = σ0(x)
(6.4c) ε(0, x) = 0

 in Ω

(6)

Equations (6.1a) and (6.1b) arise from the application of the balance principle of linear and
angular momentum, in the absence of body and surface couples. Equation (6.2) is the for-
mulation of the constitutive law of the viscoplastic materially simple continuum Ω, under the
assumption of small transformations. The boundary conditions are given by equations (6.3a)
and (6.3b). Finally, relations (6.4a), (6.4b) and (6.4c) provide initial conditions of the problem.

In the following subsection 2.4 we give the detailed expression of the viscoplastic compo-
nent (4) of the strain rate tensor.

2.4 Description of the viscoplastic component of the strain rate ten-
sor

The viscoplastic criterion, proposed by Di Benedetto5 from experimental data obtained by
Yan4 on cylindrical samples of bituminous concrete, is defined, in the orthonormal space IR3

of principal stresses, by two cone-shaped parts with apex on the trisector σ1 = σ2 = σ3. The
intersections of both of these conic parts with the deviatoric planes (i.e. the planes which
are orthogonal to the trisector) are equilateral triangles, the vertices of which are located on
the projections (onto these planes) of the negative half-axes of IR3. The figure 1 shows the
geometrical shape of that criterion in the bisecting plane σ2 = σ3 (fig. 1.a), as well as in the
deviatoric plane common to both of its parts (fig. 1.b).

This criterion is isotropic and convex. Its interior defines the states of stresses for which the
viscoplastic component of the strain rate is inactive (ε̇(vp) = 0), and for which the behaviour of
the continuum is assumed to be linear elastic. The states of stresses exterior to the criterion
and located in deviatoric planes intersecting it are those for which the viscoplastic component
is active. The other states of stresses, located in deviatoric planes which have no intersection
with the criterion, are assumed to be not allowed. They are defined by trσ ≥ 3σ0t, where the
point with coordinates σ1 = σ2 = σ3 = σ0t is the apex of the criterion (fig. 1).

In addition to the geometrical shape of the viscoplastic criterion shown on figure 1 we have
also the following expression (Di Benedetto2, 5) of the breaking axial stresses σ

(c)
1 , for axisym-

metric triaxial tests in compression (σ1 ≤ σ2 = σ3) on cylindrical samples of bituminous con-
crete with constant lateral stress σ2 = σ3 and constant axial strain rate ε̇1 < 0. Let us remind
the reader that the sign conventions are those used in continuum mechanics (i.e. the tensile
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stresses are positive and the compressive ones are negative, and that consequently positive
strains represent extensions whereas negative strains represent contractions).

−σ(c)
1

σu

= α
−σ3

σu

+ β(T, cp) ln

(
−ε̇1 + δ(T )

ε̇u

)
+ γ(T, cp)

with α = αc if σ3 ≤ 0 and α = αt if σ3 ∈]0, σ0t]

(7)

In this expression αc and αt are two positive given constants such that αt > αc > 1, β and γ
are two given functions of the absolute temperature T and of the compactness cp, and δ is a
given function of the absolute temperature. As to the constants σu and ε̇u, they are units of
stress and strain rate, respectively.

For the same axisymmetric triaxial tests in compression, we get also 5 the residual axial
stresses after relaxation σ

(cr)
1 by setting ε̇1 = 0 in the previous expression (7):
−σ(cr)

1

σu

= α
−σ3

σu

+ β(T, cp) ln

(
δ(T )

ε̇u

)
+ γ(T, cp)

with α = αc if σ3 ≤ 0 and α = αt if σ3 ∈]0, σ0t]

(8)

These residual stresses are also given by the above criterion (Di Benedetto5) when restricted to

the half-plane σ1 ≤ σ2 = σ3. In particular we have, by setting σ
(cr)
1 = σ3 = σ0t in expression (8),

the following relation binding σ0t, αt, T and cp:

(1− αt)σ0t + σuβ(T, cp) ln
δ(T )

ε̇u

+ σuγ(T, cp) = 0 (9)

For given ε̇1 < 0, T and cp, relations (7) and (8) show that the breaking stresses σ
(c)
1 for

axisymmetric triaxial tests in compression are located on two straight lines parallel to the
criterion. The experimental data obtained by Yan4 corroborate this feature for the tests in
extension. More precisely, for given c > 0, T and cp, the breaking axial stresses σ(c)

a in com-
pression (resp. σ(t)

a in extension) for axisymmetric triaxial tests with constant lateral stress σl

and constant axial strain rate ε̇a = −c (resp. ε̇a = c) can be obtained from the above criterion
by similarity, as shown by the figure 2. Moreover, this criterion gives the residual stresses after
relaxation σ(cr)

a (resp. σ(tr)
a ).

Eventually, the viscoplastic flow rule is assumed to be axisymmetric cone-shaped round the
trisector in the orthonormal space IR3 of principal stresses, and the principal directions of the
viscoplatic component ε̇(vp) of the strain rate tensor are assumed to be identical with those
of the Cauchy stress tensor σ. Therefore the direction dε̇(vp) of ε̇(vp), which is defined by

dε̇(vp) = ε̇(vp)/‖ε̇(vp)‖ where ‖ε̇(vp)‖ =
√
ε̇
(vp)
ij ε̇

(vp)
ij ) is the Euclidian norm of ε̇(vp), is entirely

defined, from the above axisymmetric triaxial tests in compression, by the tangent Poisson
ratio at viscoplastic flow ν∞, which may be assumed to be independent of the axial strain rate
ε̇a < 0 and of the temperature T when considering the experimental data obtained by Yan.4

On the basis of the previous considerations coming from experimental works we shall now
develop the tensorial expression of the viscoplastic component ε̇(vp) = F(σ, T ) of the strain rate
tensor. To begin with, let us denote as s the deviatoric part of the stress tensor σ, defined by
s = σ−σmI2 with 3σm = trσ. We assume that the state of stress σ is such that the viscoplastic
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component of the strain rate tensor is active (ε̇(vp) 6= 0). Then the above assumptions relating
to the viscoplastic flow rule and the principal directions of ε̇(vp) lead to the following expression
of dε̇(vp) :

dε̇(vp) = A1I2 + A2
s

‖s‖
(10)

where A1 and A2 are two constants to be determined. But, for axisymmetric triaxial tests in
compression with constant lateral stress σ2 = σ3 and constant axial strain rate ε̇1 < 0, we have
the following expression of ε̇(vp) and s at viscoplastic flow:

ε̇(vp) = ε̇1

 1 0 0
0 −ν∞ 0
0 0 −ν∞

 s =
σ

(c)
1 − σ3

3

 2 0 0
0 −1 0
0 0 −1

 (11)

We then get

dε̇(vp) =
−1√

1 + 2ν2
∞

 1 0 0
0 −ν∞ 0
0 0 −ν∞

 s

‖s‖
=
−1√

6

 2 0 0
0 −1 0
0 0 −1

 (12)

which gives

dε̇(vp) = −1

3

1− 2ν∞√
1 + 2ν2

∞

I2 +

√
2

3

1 + ν∞√
1 + 2ν2

∞

s

‖s‖
(13)

Therefore, taking into account the uniqueness of the decomposition of a second-order symmetric
tensor into isotropic and deviatoric parts, we obtain the following expressions of the constants
A1 and A2:

A1 = −1

3

1− 2ν∞√
1 + 2ν2

∞

A2 =

√
2

3

1 + ν∞√
1 + 2ν2

∞
(14)

In other words the expression (13) of dε̇(vp) holds, not only for axisymmetric triaxial tests in
compression, but also for any given state of stress σ for which the viscoplastic component ε̇(vp)

is active. Now there remains for us to give the general expression of the norm ‖ε̇(vp)‖ of that
component.

For that purpose let σ1, σ2 and σ3 be the principal values of σ, and let M be the point with
coordinates (σ1, σ2, σ3) in the orthonormal space IR3 of principal stresses. Then M belongs to
a unique surface obtained by similarity from the viscoplastic criterion, as shown on figure 2.
This surface is entirely determined by the scalar D defined on the same figure. The expression
of D as a function of the principal stresses is given by

D =

√
3

2
max {s1, s2, s3} =

√
3

2

(
max {σ1, σ2, σ3} − σm

)
(15)

where s1, s2 and s3 are the eigenvalues of s. Note that the set of points (x1, x2, x3) of IR3 such

that max {x1, x2, x3} − (x1 + x2 + x3)/3 =
√

2/3D is the cylinder, parallel to the trisector, the
section of which is the equilateral triangle obtained by intersection of the previous surface with
the deviatoric plane (Π) containing the point M(σ1, σ2, σ3) (fig. 2).
As mentioned above, the surface obtained by similarity from the viscoplastic criterion as shown
on figure 2 and to which M belongs can also be got, for a given c > 0, by axisymmetric triaxial
tests in compression and in extension with constant lateral stress σl ≤ σ0t and constant axial
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strain rate ε̇a = ±c. For the tests in compression (ε̇a = −c < 0) the breaking axial stresses σ(c)
a

and the residual axial stresses after relaxation σ(cr)
a are then given by the relations (7) and (8),

respectively. By substracting equation (8) from (7) we obtain the following expression:

−σ(c)
a + σ(cr)

a

σu

= β(T, cp) ln

(
1 +

c

δ(T )

)
(16)

which is obviously independent of σl and of the function γ(T, cp). For σl = 0 and taking into

account the notations in figure 2, we have σ(c)
a = −σ(c)

0 and σ(cr)
a = −σ(cr)

0 , respectively. So,
from the previous equation (16) we obtain the following expression of c:

c = δ(T )

exp

 1

β(T, cp)

σ
(c)
0 − σ

(cr)
0

σu

− 1

 (17)

From equation (8) and for σl = 0 we have also

σ
(cr)
0

σu

= β(T, cp) ln
δ(T )

ε̇u

+ γ(T, cp) (18)

So relation (17) can be replaced by the following one:

c = ε̇u exp

 1

β(T, cp)

σ(c)
0

σu

− γ(T, cp)

− δ(T ) (19)

On the other hand, by considering the figure 2, we have the following relation binding the
scalars D and σ

(c)
0 :  2D =

√
2

3
σ

(c)
0 +

1√
3

(
−trσ − σ

(c)
0

)
tan (θ − θ0)

with θ = θc if trσ ≤ −σ(c)
0 and θ = θt if not

(20)

By reconsidering the same figure 2, for any given state of stress σ for which the viscoplas-
tic component ε̇(vp) is active and taking into account the expression (15) of D, we have

trσ ≤ −σ(c)
0 ⇐⇒ D ≤ −1/

√
6trσ ⇐⇒ max {σ1, σ2, σ3} ≤ 0. Moreover the following equali-

ties hold: 

tan θ0 =
1√
2

tan θc =
αc√

2

tan θt =
αt√
2

(21)

Thus we have  tan (θ − θ0) =
√

2
α− 1

α+ 2
with α = αc if max {σ1, σ2, σ3} ≤ 0 and α = αt if not

(22)

and the previous relation (20) gives σ
(c)
0 =

(2 + α)
√

6D + (α− 1) trσ

3
with α = αc if max {σ1, σ2, σ3} ≤ 0 and α = αt if not

(23)
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or, taking into account the expression (15) of D{
σ

(c)
0 = −trσ + (2 + α) max {σ1, σ2, σ3}

with α = αc if max {σ1, σ2, σ3} ≤ 0 and α = αt if not
(24)

Then the expression (19) which defines the surface containing M (see figure 2) becomes c = ε̇u exp

(
1

β(T, cp)

(
−trσ + (2 + α) max {σ1, σ2, σ3}

σu

− γ(T, cp)

))
− δ(T )

with α = αc if max {σ1, σ2, σ3} ≤ 0 and α = αt if not
(25)

Unfortunately, althoug this expression of c holds for any given state of stress σ for which the
viscoplastic component ε̇(vp) is active, it is not sufficient to give the corresponding expression
of ‖ε̇(vp)‖. However, for axisymmetric triaxial tests in compression with constant lateral stress
σ2 = σ3 and constant axial strain rate ε̇1 = −c < 0, the expression (11) of ε̇(vp) gives immediately

‖ε̇(vp)‖ = c
√

1 + 2ν2
∞ (26)

As to the axisymmetric triaxial tests in extension with constant lateral stress σ2 = σ3 and
constant axial strain rate ε̇1 = c > 0, the expression (13) of dε̇(vp) leads to

‖ε̇(vp)‖ = 3c

√
1 + 2ν2

∞

1 + 4ν∞
(27)

So, owing to the isotropy of the viscoplastic criterion and of the surface containing M and
obtained from this criterion by similarity as shown on figure 2, we suggest to express ‖ε̇(vp)‖ by
using the following interpolation

‖ε̇(vp)‖ = c
(
Nt +Nc

2
+
Nt −Nc

2
cos(3φ)

)
with Nc =

√
1 + 2ν2

∞ and Nt = 3

√
1 + 2ν2

∞

1 + 4ν∞

(28)

where the Lode angle φ is defined on figure 2. The value of cos(3φ) is given by

cos(3φ) = 3
√

6
s1s2s3

‖s‖3
=
√

6tr(d3
s) (29)

In that expression ds denotes the direction of s defined by ds = s/‖s‖, where ‖s‖ =
√
sijsij is

the Euclidian norm of s.

Thus relations (25) and (28) give the general expression of ‖ε̇(vp)‖ which leads to the general
form of the viscoplastic component ε̇(vp), taking into account the expression of dε̇(vp) given by
equation (13). Let us remind the reader that this component is inactive if the point M with
coordinates (σ1, σ2, σ3) is located inside the viscoplastic criterion, and that the states of stresses
located in deviatoric planes which have no intersection with this criterion are not allowed. In
the first case we have σ

(c)
0 ≤ σ

(cr)
0 and in the second one trσ ≥ 3σ0t, where σ0t is defined on

figure 1. By considering equations (9) and (18), we have also the following expression of σ0t:

σ0t =
σ

(cr)
0

αt − 1
(30)
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Finally, from all the above considerations, we can give the general expression of ε̇(vp).

ε̇(vp) = F(σ, T ) = φ1(σ, T )
[
C1 − C2tr(d

3
s)
]
[φ2(σ, T )− δ(T )] [−C3I2 + C4ds] (31)

with: 

φ1(σ, T ) = Y
(
σ

(c)
0 − σ

(cr)
0

)
Y

−trσ +
3σ

(cr)
0

αt − 1


φ2(σ, T ) = ε̇u exp

 1

β(T, cp)

σ(c)
0

σu

− γ(T, cp)


σ

(cr)
0 = σu

(
β(T, cp) ln

δ(T )

ε̇u

+ γ(T, cp)

)
σ

(c)
0 = −trσ + (2 + α) max {σ1, σ2, σ3}

C1 = 2
1 + ν∞
1 + 4ν∞

C2 =
√

6
2ν∞ − 1

1 + 4ν∞
C3 =

1− 2ν∞
3

C4 =

√
2

3
(1 + ν∞)

with α = αc if max {σ1, σ2, σ3} ≤ 0 and α = αt if not

(32)

where Y denotes the Heaviside function.

We shall now focus on the time discretization of the continuous thermomechanical problem
described in this section, and then on the weak formulation of the resulting time-discretized
problems.

3 Weak formulation of the time-dicretized thermome-

chanical problem

Let N ∈ IN∗ and let t0, t1, . . . , tN be an increasing sequence of time values such that t0 = 0
and tN = T. In the following we are interested in the displacement fields u(tn, .) and in the tem-
perature fields T (tn, .) relating to the time values tn, n ∈ {1, . . . , N}. We put, ∀n ∈ {0, . . . , N}
and ∀x ∈ Ω, un(x) = u(tn, x), as well as analogous notations for t, T , σ, ε, b, g, Q, ui, Ti

and ϕ, and we denote as ∆tn the time-increment tn − tn−1, n ∈ {1, . . . , N}. The two following
subsections 3.1 and 3.2 are devoted to the weak formulation of the time-discretized thermal
and mechanical problems, respectively, whereas the subsection 3.3 focuses on the particularly
important point constituted by the time discretization of the constitutive equations (2), (3),
(5), (31) and (32).

3.1 Weak formulation of the time-discretized thermal problem

The time discretization of the continuous thermal problem (1) requires to approximate the
time derivative Ṫ of the absolute temperature T . In order to ensure the unconditional stability
we choose to make this approximation by using the fully implicit Euler scheme. So we obtain,
from (1), the following sequence of time-dicretized problems (Qn), n ∈ {1, . . . , N}:

(Qn)


(33.1) divx (λTngradxTn(x)) +Qn(x) = ρcTn

Tn(x)− Tn−1(x)

∆tn
in Ω

(33.2a) Tn(x) = Tin(x) on Γ1(tn)
(33.2b) −λTngradxTn(x).n = ϕn(x) on Γ2(tn)
(33.2c) −λTngradxTn(x).n = hTn (Tn(x)− Ta) on Γ3(tn)

(33)
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Let now W = H1(Ω) be the Sobolev space of real square integrable functions defined on Ω with
square integrable first-order generalized derivatives. For any given n ∈ {1, . . . , N} we denote
as Wn the closed subspace of W of the functions w ∈ W such that w |Γ1(tn) = 0. Let us then
consider the product of w ∈ Wn and the equation (33.1) and integrate the resulting expression
on Ω. Thus, after integration by parts and use of the Gauss integral identity, and taking into
account the boundary conditions (33.2b) and (33.2c), we obtain the classical weak formulation
(Qnv) of (Qn) :

(Qnv)



Find Tn ∈ W such that∫
Ω

(
ρcTn

∆tn
(Tn − Tn−1)w + λTngradxTn.gradxw+

)
dΩ +

∫
Γ3(tn)

hTn (Tn − Ta)w dΓ

=
∫
Ω

Qnw dΩ−
∫

Γ2(tn)

ϕnw dΓ ∀w ∈ Wn

Tn = Tin on Γ1(tn)

(34)

The variational problem (Qnv) can then be solved by the finite element method after building
a finite element space Wh ⊂ W . The problem (Qnh) coming from the finite element space
discretization, like (Qnv), is non linear since cT , λT and hT are functions of the temperature.
However these non linearities remain weak, which allows us to perform the resolution of (Qnh)
by using the fixed point method, easy to implement. If T (r)

n is the approximation coming from

the resolution of the linearized problem (Q
(r)
nh) relating to the iteration (r), then (Q

(r+1)
nh ) takes

the following form:

(
Q

(r+1)
nh

)


Find T (r+1)
n ∈ Wh such that ∀w ∈ Wh ∩Wn∫

Ω

(ρc
T

(r)
n

∆tn
T (r+1)

n w + λ
T

(r)
n

gradxT
(r+1)
n .gradxw+

)
dΩ +

∫
Γ3(tn)

h
T

(r)
n
T (r+1)

n w dΓ

=
∫
Ω

(ρc
T

(r)
n

∆tn
Tn−1 +Qn

)
wdΩ−

∫
Γ2(tn)

ϕnw dΓ +
∫

Γ3(tn)

h
T

(r)
n
Taw dΓ

T (r+1)
n = Tin on Γ1(tn)

(35)

The stop of iterations is governed by the following test∣∣∣∣∣T (r+1)
n − T (r)

n

T
(r)
n

∣∣∣∣∣ ≤ e(tol) (36)

where e(tol) has a sufficient small value, for instance e(tol) = 10−6.

Thus, the iterative resolution of (Qnh) gives the approximate value of Tn needful for the
resolution of the mechanical problem relating to the time value tn. This last problem, which is
obviously solved after (Qnh), constitutes the matter of the following subsection 3.2.

3.2 Weak formulation of the time-discretized mechanical problem

The developments made in the following subsection 3.3 devoted to the time discretization of
the constitutive equations (2), (3), (5), (31) and (32) lead, for given n ∈ {1, . . . , N} and x ∈ Ω,
to the following formal relation

εn(x) = Hnx (σn(x),Hnx) (37)
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where Hnx denotes the set of memory parameters different from σn(x) at point x and at time
tn, including especially Tn(x), εn−1(x) and σn−1(x). The tensorial function Hnx, which is non-
linear with respect to σn(x) when another scheme than a fully explicit one is chosen for the
time discretization of the constitutive equations, is assumed to be one-to-one, according to the
principle of determinism. So we can write, formally

σn(x) = H−1
nx (εn(x),Hnx) (38)

Let now V = (H1(Ω))
3
. For any given n ∈ {1, . . . , N} we denote as Vn the closed subspace of

V of the functions v ∈ V such that v |Γ4(tn) = 0. Let us then consider the inner product of
v ∈ Vn and the equation (6.1a) obtained for t = tn and integrate the resulting expression on Ω.
Thus, after integration by parts and use of the Gauss integral identity, and taking into account
the previous relation (38) together with the boundary conditions (6.3b) at time tn, we obtain
the classical weak formulation (Pnv) of the time-discretized mechanical problem relating to the
time value tn:

(Pnv)


Find un ∈ V such that∫

Ω

H−1
nx (ε(un),Hnx) : ε(v) dΩ =

∫
Ω

bn.v dΩ +
∫

Γ5(tn)

gn.v dΓ ∀v ∈ Vn

un = uin on Γ4(tn)

(39)

where the operator ε is defined by ε(.) =
(
gradx(.) + gradT

x (.)
)
/2.

The space-discrete approximation (Pnh) of (Pnv) is then obtained after building a finite
element space Vh ⊂ V . As mentioned above (Pnh), like (Pnv), is non-linear when another
scheme than a fully explicit one is used for the time discretization of the constitutive equations.
Since in this last case the rheological non-linearities can increase greatly, the iterative resolution
of (Pnh) is carried out by using the robust Newton method. If u(r)

n is the approximation coming

from the resolution of the linearized problem (P
(r)
nh) relating to the iteration (r), then (P

(r+1)
nh )

takes the following form:

(P
(r+1)
nh )



Find u(r+1)
n ∈ Vh such that ∀v ∈ Vh ∩ Vn∫

Ω

ε(v) : G−1
nx

(
σ(r)

n ,Hnx

)
: ε(u(r+1)

n ) dΩ =
∫

Γ5(tn)

gn.v dΓ

+
∫
Ω

(
ε(v) :

(
G−1

nx

(
σ(r)

n ,Hnx

)
: Hnx

(
σ(r)

n ,Hnx

)
− σ(r)

n

)
+ bn.v

)
dΩ

un = uin on Γ4(tn)

(40)

where Gnx is the gradient tensor of Hnx. If for simplicity’s sake we omit the subscripts n and x,
then the components of the fourth-order tensor G = gradσ(H) are given by:

∀(i, j, k, l) ∈ {1, 2, 3}4 Gijkl =
∂Hij

∂σkl

(41)

At last the iterations are stopped when the following inequality holds:∣∣∣∣∣σ(r+1)
n − σ(r)

n

σ
(r)
n

∣∣∣∣∣ ≤ e(tol) (42)

We shall now focus, in the following subsection, on the time discretization of the constitutive
equations (2), (3), (5), (31) and (32).
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3.3 Time discretization of the constitutive equations

The present subsection is devoted to the time discretization of the constitutive equations (2),
(3), (5), (31) and (32). For that purpose two different time-discrete schemes have been imple-
mented in the finite element program elfimth developed in previous works for the numerical
resolution of boundary value problems in thermomechanics.10, 11, 12, 13 They are described in the
following paragraphs. But let us first make some general considerations.

To begin with note that the time-integration of the elastic component (3) of the strain rate
tensor is immediate. And indeed, independently of the choice of any time-discrete scheme and
taking into account the initial conditions (6.4b) and (6.4c), we have

ε(e) = C : (σ − σ0) (43)

On the other hand the thermal component (5) of the strain rate tensor will be approximated,
with O(∆t2n) accuracy, by using the well-known Crank-Nicolson scheme, which gives

ε(th)
n − ε

(th)
n−1 =

α(Tn−1) + α(Tn)

2
(Tn − Tn−1) I2 (44)

Eventually, let us put the following relations, which will be useful for the determination of
the gradient tensor G defined in the previous subsection 3.2. For that purpose let A be the
fourth-order tensor defined by

A = I4 −
1

3
I2 ⊗ I2 (45)

where I4 denotes the fourth-order unit tensor. We then have s = A : σ = σ : A. Thus,

∂s

∂σ
= A (46)

From A : A = A we get
∂ ‖s‖2

∂σ
= 2s : A = 2s (47)

and then
∂ ‖s‖
∂σ

=
s

‖s‖
= ds (48)

We have also 
∂ds

∂σ
=

1

‖s‖
A− 1

‖s‖2 s⊗ ds

=
1

‖s‖
(A− ds ⊗ ds)

(49)

On the other hand, the following relation
∂tr (s3)

∂σ
=

∂
(
sijsjkski

)
∂s

∂s

∂σ
= 3 (s.s) : A

= 3s.s− ‖s‖2 I2

(50)
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together with relation (48) leads to

∂tr (d3
s)

∂σ
=

∂

∂σ

tr (s3)

‖s‖3

=
1

‖s‖3

(
3s.s− ‖s‖2 I2

)
− 3

tr (s3)

‖s‖4

s

‖s‖

=
3

‖s‖

(
ds.ds −

1

3
I2 − tr

(
d3

s

)
ds

) (51)

Let now m = max {σ1, σ2, σ3}. Then m is a zero of the following polynomial of degree 3

P (σ,m) = −m3 + I1m
2 − I2m+ I3 (52)

where I1, I2 and I3 are defined by
I1 = trσ

I2 =
1

2

(
I2
1 − tr

(
σ2
))

I3 = detσ =
1

3
tr
(
σ3
)
− 1

2
I1tr

(
σ2
)

+
1

6
I3
1

(53)

The derivatives of those scalar invariants with respect to σ are as follows:

∂I1
∂σ

= I2

∂I2
∂σ

= I1I2 − σ

∂I3
∂σ

= σ.σ − I1σ + I2I2

(54)

Let us first assume that ∃! i ∈ {1, 2, 3} such that σi = m. Then the total differentiation of
P (σ,m) = 0 gives

∂P

∂σ
+

∂P

∂ m

∂m

∂σ
= 0 (55)

This relation together with relations (54) lead to

∂m

∂σ
=
σ.σ + (m− I1)σ + (m2 −mI1 + I2) I2

3m2 − 2mI1 + I2
(56)

Now, if ∃! (i, j) ∈ {1, 2, 3}2, i < j, such that σi = σj = m then m, which is a zero of
P (m,σ), is also a zero of the polynomial of degree 2 P ′(m,σ) = ∂P/∂m. In this par-
ticular case ∂m/∂σ is indeterminate and cannot be got from the previous relation (56).
However a mean value of this derivative can be obtained by restricting σ to the set
S = {σ;∃! (i, j) ∈ {1, 2, 3}2, i < j,with σi = σj = m}, for which the relation P ′(σ,m) = 0 holds.
Taking into account relations (54), the total differentiation of this relation gives,

∂m

∂σ
=
σ + (2m− I1) I2

2 (3m− I1)
(57)

Finally, if σ1 = σ2 = σ3 = m then m, which is a zero of P (m,σ) and P ′(m,σ), is also a zero of
the ploynomial of degree 1 P ′′(m,σ) = ∂2P/∂m2. In that case ∂m/∂σ is again indeterminate
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and cannot be obtained from relations (56) or (57) as previously, but a mean value can be got
by considering the set S = {σ;σ1 = σ2 = σ3 = m}, for which we have P ′′(σ,m) = 0. The total
differentiation of this equality together with the first of relations (54) leads to

∂m

∂σ
=

1

3
I2 (58)

The following paragraphs focus on the time discretization of the viscoplastic component (4) of
the strain rate tensor.

3.3.1 Use of the θ-scheme for the time dicretization of ε̇(vp)

For the sake of conciseness we first consider the following ordinary differential equation
ẏ(t) = f(y, t). The use of the θ-scheme for its time-dicretization over the interval [tn−1, tn]
gives

yn − yn−1 = ∆tn ((1− θ)f(yn−1, tn−1) + θf(yn, tn)) (59)

where θ ∈ [0, 1]. If θ = 0 we get the fully explicit Euler scheme, if θ = 1 the fully implicit one,
and if θ = 1/2 the Crank-Nicolson scheme. It is well known that the θ-scheme has O(∆t2n)
accuracy if θ = 1/2 and O(∆tn) if not. In other terms the previous approximation (59) of y(tn)
has O(∆t3n) accuracy if θ = 1/2 and O(∆t2n) if not. On the other hand, when f is linear then
the θ-scheme is unconditionally stable if θ ≥ 1/2 and unconditionally superstable (i.e. stable
without any oscillation) if θ = 1. If θ < 1/2 (resp. θ 6= 1) then the time step ∆tn must take
sufficiently small values in order to ensure the stability (resp. the superstability).

So the use of this classical scheme for the time discretization of the viscoplastic component
ε̇(vp) coming from relations (31) and (32) gives

ε(vp)
n − ε

(vp)
n−1 = ∆tn ((1− θ)F(σn−1, Tn−1) + θF(σn, Tn)) (60)

By omitting the space variable x and taking into account relations (43) and (44), this leads to
the following expression of the formal relation (37)

εn = Hn (σn,Hn)
= C : (σn − σn−1) + ∆tn ((1− θ)F(σn−1, Tn−1) + θF(σn, Tn))

+
α(Tn−1) + α(Tn)

2
(Tn − Tn−1) I2 + εn−1

(61)

Let us now reconsider the expressions (31), (32), (49), (51), (56), (57) and (58) together with
the first of relations (54). Then the fourth-order tensor Gn = gradσ(Hn) defined by (41) and
relating to the iteration (r) takes the following form

Gn

(
σ(r)

n ,Hn

)
= C + θ∆tnφ1

(
σ(r)

n , Tn

) [
G1

(
σ(r)

n ,Hn

)
+ G2

(
σ(r)

n ,Hn

)
+ G3

(
σ(r)

n ,Hn

)]
(62)

where the scalar function φ1 is given by the first of relations (32). As to the fourth-order
tensorial functions G1, G2 and G3 of σ(r)

n and of the memory parameters Hn, they are given
by the following expressions, in which σ(r)

n has been replaced by σ for the sake of simplicity.

G1 (σ,Hn) =
C4

‖s‖
[
C1 − C2tr(d

3
s)
]
[φ2(σ, Tn)− δ(Tn)]

[
I4 −

1

3
I2 ⊗ I2 − ds ⊗ ds

]

G2 (σ,Hn) =
3C2

‖s‖
[φ2(σ, Tn)− δ(Tn)] [C3I2 − C4ds]⊗

[
ds.ds −

1

3
I2 − tr(d3

s)ds

]

G3 (σ,Hn) =
φ2(σ, Tn)

β(Tn, cp)σu

[
C1 − C2tr(d

3
s)
]
[C3I2 − C4ds]⊗

[
I2 − (2 + α)

∂m

∂σ

]
(63)
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The expressions of C1, C2, C3, C4, α and φ2 are detailed in (32). Finally let us remind the reader
that m = max{σ1, σ2, σ3}, where σ1, σ2 and σ3 are the principal stresses, and that ∂m/∂σ is
given by the relation (56) if ∃! i ∈ {1, 2, 3} such that σi = m, by (57) if ∃! (i, j) ∈ {1, 2, 3}2,
i < j, such that σi = σj = m, and by (58) if σ1 = σ2 = σ3 = m.

3.3.2 Direct integration of ε̇(vp)

This scheme is based on the following O(∆t2n)-accurate approximation of σ(t)

∀t ∈ [tn−1, tn], σ(t) = σn−1 +
σn − σn−1

tn − tn−1

(t− tn−1) +O(∆t2n) (64)

For the sake of simplicity, we shall consider that the value of the temperature used to compute
the parameters β, γ and δ in equation (31) is constant on each interval ]tn−1, tn[ and equal to
Tn− 1

2
= Tn−1+Tn

2
. Under this asumption, we will now omit the temperature dependence of the

viscoplastic strain-rate and write, ∀t ∈]tn−1, tn[ :

ε̇(vp) = F(σ, T ) = F
(
σ, Tn− 1

2

)
We will first describe the direct integration scheme by considering the following ordinary dif-
ferential equation, where u and v play parts analogous to those of σ and ε, respectively

v̇(t) = f(u(t)) (65)

Then the previous approximation (64) gives :

v̇(t) = f

(
un−1 +

un − un−1

tn − tn−1

(t− tn−1)

)
+O(∆t2n) (66)

and the direct integration of equation (66) leads to :

vn − vn−1 =
∫ tn

tn−1

f

(
un−1 +

un − un−1

tn − tn−1

(t− tn−1)

)
dt (67)

which is a O(∆t3n)-accurate relation between u and v.

In the case of the constitutive equation (2), this scheme leads to the following expression of
the formal relation (37):

εn = Hn(σn,Hn)

εn = C : (σn − σn−1) +
∫ tn

tn−1

F

(
σn−1 +

σn − σn−1

tn − tn−1

(t− tn−1), Tn− 1
2

)
dt

+
α (Tn−1) + α(Tn)

2
(Tn − Tn−1)I2 + εn−1

(68)

and the fourth-order tensor Gn = gradσ(Hn) defined by (41) and relating to the iteration (r)
has the following form :

Gn

(
σ(r)

n ,Hn

)
= C +

∫ tn

tn−1

t− tn−1

tn − tn−1

gradσF

(
σn−1 +

σ(r)
n − σn−1

tn − tn−1

(t− tn−1), Tn− 1
2

)
dt (69)
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in which we have, by setting

σ(r)(t) = σn−1 +
σ(r)

n − σn−1

tn − tn−1

(t− tn−1) (70)

 gradσF
(
σ(r)(t), Tn− 1

2

)
= φ1

(
σ(r)(t), Tn− 1

2

) [
G1

(
σ(r)(t), Tn− 1

2

)
+G2

(
σ(r)(t), Tn− 1

2

)
+ G3

(
σ(r)(t), Tn− 1

2

)] (71)

where G1, G2 and G3 are computed from (63) after replacing σ by σ(r)(t) and Tn by Tn− 1
2
.

Both integrals defined by equations (68) and (69) are evaluated by using the Gauss-Legendre
quadrature method.

4 Numerical simulations

In order to compare the different schemes presented in section (3.3), two problems have been
simulated. The first one is an axisymmetric triaxial test. It is aimed to validate the schemes
and to compare their accuracy and stability. The second one is a thermomechanical loading of
a road, under the same conditions as a real-size test made by the lavoc of the epfl. It allows
us to test the finite-element program on a real problem by comparing numerical results to
experimental data. In the corresponding section, the temperatures are given in oC for clarity’s
sake.

4.1 Axisymmetric triaxial test

In this subsection, which only deals with compression tests, the sign conventions of the soil
mechanics will be used for stresses and strains. We shall then consider that stresses are positive
in compression and negative in traction. Consequently, positive strains represent contractions,
whereas negative strains represent extensions.

The first series of computations are aimed to simulate an homogenous axisymmetric triaxial
test on a cylindrical sample of bituminous concrete. It is divided into two phases: first, a
constant strain rate is applied on the top of the sample in order to compress it. Then, when a
strain level equal to 4.0 % is reached, a relaxation phase is simulated. These tests are conducted
under a controlled constant temperature of 23 oC, and the mechanical parameters are chosen
to simulate a material similar to the one used by Yan.4 For the elastic part, Young modulus is
E = 600 MPa and Poisson ratio is ν = 0.3. For the viscoplastic part, the two constants defining
the criterion are αc = 2.25 and αt = 3.15, the compactness of the concrete is cp = 93.6 % and
the tangent Poisson ratio at viscoplastic flow is ν∞ = 1.0. On account of the axisymmetry and
of the homogeneity of the problem, the sample is modelled by a single four-node quadrilateral
element corresponding to its quarter, as shown on figure 3. This figure also presents the
boundary conditions.

In this subsection, we are interested in two properties of the different schemes: their stability
and their accuracy. And indeed, it is well known that for viscous constitutive equations, implicit
schemes show a better stability than explicit ones.16, 11, 21, 22 We also focused on second-order
accurate schemes for which we are expecting a good accuracy.
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4.1.1 Stability

In order to compare the stability of the different schemes, computations are made with
increasing values of the time step. Since unstability appears during the viscoplastic flow, we
only simulate the first phase of loading (compression at a constant strain rate).

There is no analytical solution of such a problem. In order to get a reference solution, called
REF in the following, the axial stress σ22 is computed thanks to the classical fourth-order
Runge-Kutta scheme (for instance, see Crouzeix and Mignot23) applied to the one-dimensional
equation binding σ22 and ε22. The high number of time steps (20000) is chosen so that a
solution obtained with twice increments will differ from the previous one in no more than the
machine accuracy.

Four schemes are used in these simulations: for the sake of simplicity, they will be referred
to by the following acronyms: explicit Euler scheme EE (θ-scheme with θ = 0), implicit Euler
scheme IE (θ = 1), Crank-Nicolson scheme CN (θ = 0.5) and direct integration scheme DI.
The loading is made with a constant strain rate of ε̇22 = 1 %min−1 and a time step of ∆t = 6 s,
∆t = 12 s, ∆t = 24 s and ∆t = 48 s. The results are presented in table 1.

Table 1: Stability of the schemes
∆t 6 s 12 s 24 s 48 s

CN good good corner good
EE divergence divergence divergence divergence
IE good good good good
DI good good corner oscillations

In that table, the term ”corner” stands for solutions with a stress peak during transition from
elastic behaviour to viscoplastic behaviour (see figure 4.b). The reason is that the different
schemes use various combinations of σn−1 and σn in order to compute the next stress σn. If the
former stress σn−1 plays too big a part, the numerical solution is more elastic-like than the real
response. This overestimation disappears at the next increment, when the elastic behaviour
vanishes compared to the viscoplastic one.

The bad results obtained with the explicit Euler scheme are not surprising. This scheme
is the only one without implicit component, and previous studies (Royis and al13) show that
for such a problem the size of the time step must not be greater than 2.4 s in order to avoid
divergence. The performances of implicit Euler scheme, Crank-Nicolson scheme and direct-
integration scheme are similar to those observed by Royis11, 21, 22 for linear and non-linear vis-
coelastic constitutive equations. As an example, strain-stress curves are presented for explicit
Euler scheme (figure 4.a), implicit Euler scheme, Crank-Nicolson scheme and direct integration
scheme (figure 4.b) for ∆t = 24 s.
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4.1.2 Accuracy

The second step to compare the schemes is to evaluate their precision on a simple problem.
Once again, the axisymmetric triaxial test described at the beginning of subsection 4.1 has
been chosen. Let us recall that this test is divided into two phases: first, a vertical contracting
displacement is applied onto the sample at a constant strain rate. When a strain ε22 = 4 % is
reached, the head of the sample is prevented from moving in order to let the bituminous concrete
relax. This condition is maintained until the end of the test which lasts 2100 s. As for the previ-
ous test, an analytical solution cannot be found out. The reference solution is then given by the
application of the classical fourth-order Runge-Kutta method to the one-dimensional constitu-
tive equation binding σ22 and ε22, with as many time steps as required to get scheme-imprecision
lower than computer’s round-off error, that is with 14000 time steps. Comparisons between the
four schemes are made with three different strain-rates: ε̇22 = 0.25 %min−1, ε̇22 = 1.0 %min−1

and ε̇22 = 4.0 %min−1. The time step size is equal to ∆t = 1.2 s to avoid unstability problems.
Each simulation is then computed with 1750 time steps. For each scheme, the relative error is
computed with:

en =

∣∣∣∣∣∣σ
(num)
22n − σ

(ref)
22n

σ
(ref)
22n

∣∣∣∣∣∣ (72)

where for each time tn, en is the error, σ
(num)
22n is the axial stress obtained by the finite element

program and σ
(ref)
22n is the one given by the reference solution. For each scheme and for each

value of ε̇22, the table 2 gives the maximum of the relative error.

Table 2: Precision of the schemes
ε̇22 0.25 %min−1 1.0 %min−1 4.0 %min−1

CN 9.92 10−5 4.22 10−4 4.50 10−3

EE 4.70 10−3 1.21 10−2 1.17 10−1

IE 4.60 10−3 1.12 10−2 2.75 10−2

DI 9.92 10−5 2.28 10−4 2.20 10−3

We first note that the error increases for higher strain-rate, whatever the scheme is. The
theory predicted that second-order accurate schemes would give better results than first-order
accurate ones. It can be seen in table 2: implicit and explicit Euler schemes give errors 50 times
bigger than the other ones. Moreover, direct integration scheme seems to be slightly better than
Crank-Nicolson one. As an instance, the relative error en versus time is shown for implicit Euler
scheme (figure 5.a) and Crank-Nicolson scheme (figure 5.b) with ε̇22 = 0.25 %min−1.

As shown on figure 5, the relative error reaches its maximum during the beginning of the
relaxation phase. It is equal to zero during the viscoplastic flow in the compression phase, and
remains sligthly oscillating at the end of relaxation phase.

4.1.3 Computation speed

The ultimate goal, when developing various integration schemes, is to increase the speed of
the computations without losing any precision. The speed of a computation depends on two
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parameters: the number of time steps used to run the simulation, and the number of iterations
required to obtain the convergence of the Newton method in each time-step. Let us point out
here that the convergence is assumed to be obtained as soon as the relative difference (42)
between two successive stress fields becomes lower than 10−6. Moreover, let us remind the
reader that for explicit Euler scheme EE the convergence is obtained after the first iteration.
To be rigorous, we have to take into account the duration of an iteration for the various
schemes. The previous simulations performed on the same computer showed that this duration
is approximatively the same (around a quarter of second), whatever the scheme employed is.
This means that the finite element processing and files operations make the difference in number
of basic operations negligible for the different schemes considered.

The two former subsections showed the good properties of the three non-explicit schemes EI,
CN and DI. For a given size ∆t of the time-step, the total number of iterations required by
each of these three schemes allow us to compare their computation speed. These results are
presented in table 3, for the same problem as in subsection 4.1.1 (homogenous axisymmetric
triaxial test in compression) with the same boundary conditions.

Table 3: Total number of iterations for different values of the time step
∆t 1.2 s 6 s 12 s 24 s 48 s

CN 419 88 54 45 38
IE 438 114 72 57 36
DI 421 89 54 47 *
* Not computed because oscillating

This table shows the better behaviour of second-order schemes CN and DI, which converge
faster than the first-order scheme EI. But when ∆t becomes too big (48 s), the oscillations in
CN make the convergence harder to obtain, whereas IE (which is superstable) becomes as fast
as the second-order scheme CN.

As shown in subsection 4.1.2, the second advantage of second-order schemes is their higher
precision. For instance, for ∆t = 6 s, the relative error (72) can be computed, thanks to the
“reference solution” given by the Runge-Kutta method with 20000 time steps. It is worth
3.705 10−3 for CN and 2.989 10−3 for DI. By comparison, 500 time steps of 1 iteration each are
required to obtain similar precison with the explicit Euler scheme EE, as shown in table 4.

Table 4: Relatives errors of EE for different values of the time step
∆t 1.2 s 0.6 s 0.48 s 0.3 s

Nb of increments 200 400 500 800
Relative error 9.633 10−3 4.779 10−3 3.829 10−3 2.389 10−3
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In other terms, for the problem considered schemes CN and DI allow us to obtain the same
precison as EE 5.6 times faster.

4.2 Thermomechanical loading of a road structure

Bituminous concrete is widely used in road construction. So it seems natural to use our finite-
element program to simulate the behaviour of a road structure. This simulation is based on a
real-size experiment performed at the lavoc in 199124 and 1992.25 The experimental data are
presented in the report of the lavoc.6 In this subsection, the sign conventions of the continuum
mechanics will be used: stresses are positive for tractions and negative for compressions, positive
strains represent extensions and negative strains represent contractions.

4.2.1 Presentation

The structure consists of three rectangular layers (4m× 5m), as can be seen on figure 6.

The first one is bituminous concrete, called BC on that figure, and is 8 cm thick. We model it
with the previous constitutive equations (2), (3), (5), (31) and (32). Its mechanical parameters
are the same as for the previous tests (described in subsection 4.1). The second layer is made
of GRECO (Groupement de REcherches COordonnées) sand (called sand 1 on the figure) and
is 80 cm thick. The last one is of La Saubraz sand (sand 2) and is 120 cm thick. Both sands are
governed by the same incremental law involving interpolations together with a Drucker-Prager
criterion. Let us notice that the study of such a law is not within the scope of the paper. For
details, the reader may refer to Royis. 26, 11 The mechanical parameters for both materials are:
initial tangent modulus E0 = 253 MPa, initial tangent Poisson ratio ν0 = 0.23, tangent Poisson
ratio at the plastic flow for compression axisymmetric triaxial test νa = 0.7, cohesion C = 0
and friction angle ψ = 45o. In order to simulate the thermal behaviour of materials, we also
need the following values: mass density ρ (kg.cm−3), thermal conductivity λT (W.cm−1.oC−1)
–which can be temperature-dependent–, heat capacity at constant volume cT (J.kg−1.oC−1) and
coefficient of thermal expansion α (oC−1). The values used in the program are given in table 5
(the temperatures are given in oC).

Table 5: Numerical values of thermal parameters
Material ρ T λT cT α

kg.cm−3 oC W.cm−1.oC−1 J.kg−1.oC−1 oC−1

7 6.923 10−3

Bituminous concrete 2.2785 10−3 15 9.231 10−3 759 4.85 10−5

28 9.532 10−3

Greco’s sand 1.4697 10−3 / 1.03 10−2 917 0
La Saubraz’ sand 1.5618 10−3 / 1.03 10−2 917 0

The experiment consists of three phases: a thermal one, a mechanic one with quasistatic
loadings and several temperature states, and a dynamic one. The last one will not be simulated
here because the program used is not able to take dynamic effects into account. The thermal
boundary conditions, described further, are such that the temperature state at a given time
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depends only on the depth. Two rigid discs (called I and II) are used to load the structure.
Their diameter is 30 cm. We focus on the zone around one disc (disc I). When this disc is
used, the other one is unloaded. Moreover, since the distance between the two axes is 180 cm,
the effects of the previous loadings through disc II on the memory parameters of the materials
near disc I may be neglected. The axis of disc I is 160 cm far from the closest border, so the
border effects can be neglected too. Then we shall assume that the problem is axisymmetric.
The radial half-plane of a cylinder with the same axis as the disc I is discretized with the help
of a 200 four-node quadrilateral elements mesh with 429 degrees of freedom. This cylinder is
208 cm high and its radius is 220 cm so as to ensure that the stresses and the strains are equal
to 0 at the points 160 cm far from the axis (closest border of the road structure).

The mesh is represented on figure 6. The thermal boundary conditions are of two types:
Dirichlet conditions on side BC (a cooling system sets the temperature at 10 oC), Neumann
conditions on sides AB (symmetry of the problem) and CD (insulated border). As to side DA
(convection between air and road surface), the simplest hypothesis has been taken: since it is
very difficult to set a good convective surface heat transfer coefficient, we decided to consider
that the bituminous concrete temperature on the surface was the same as the air temperature.
Computations with both Dirichlet and Fourier conditions have been made and the specified
temperature condition gave the best results in comparison with experimental data. For the
mechanical problem, we set: on sides AB, BC and CD, normal displacement ui · n = 0 and
tangential stress g · t = 0 (where t is directly orthogonal to the normal n). On side DA, the
stress vector is null except under the loading disc where g = −F

S
ez, with S = 706.86 cm2 the

area of the disc and F the global force applied on that disc. The mesh and the boundary
conditions for the mechanical problem are represented on figure 6.

4.2.2 Thermal loading

The first phase of the test conducted in the lavoc consisted in having air temperature varied
between 21 oC, 5 oC and 40 oC and mesuring temperature in the different layers. The simulation
is divided into 1312 time steps lasting about 2 hours each. The figure 7 compares experimental
and numerical results for 4 different depths.

As can be seen on this figure, the simulation gives good results, despite the hypothesis about
boundary conditions between air and road surface. The only noticeable difference is due to a
failure in the temperature regulator at the end of the first phase in the lavoc, which has not
been modelled in our computation.

4.2.3 Mechanical loading

A rigid disc is used in order to apply a uniform stress on a part of the surface of the struc-
ture. Lavoc experiment consisted in four phases of loading, each of them applied under a
constant temperature. Only one of these phases is presented here. The temperature of the air
is maintained at 5 oC. This condition is set during 19 days, in order to get a time-independent
temperature field in the road structure. So, as explained above, the temperature depends only
on the depth. The mechanical loading (global force F ) is then applied as shown on figure 8.

This phase is modelled by using the same 429-dof-mesh as above. Due to previous consid-
erations, the problem is supposed to be axisymmetric. The boundary conditions are as above,
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with specified temperature on side DA equal to 5 oC (air temperature) and force F given by
figure 8. The Crank-Nicolson scheme has been used for the discretization of the constitutive
equations of the bituminous concrete. Some results are given on figures 9 to 13. These fig-
ures show the strains obtained from the program (continued lines, referred to by numbers in
brackets) compared with experimental data provided by the lavoc (dotted lines, referred to
by numbers in square brackets).

Figure 9 shows the radial strains under the axis of loading at the middle of the layer of
bituminous concrete (z = −4 cm) and at the interface between the bituminous concrete and
the sand (z = −8 cm). There are noticeable differences between numerical and experimental
results, especially as regards z = −4 cm. It may be due to the spatial discretization used
in the program: strains are computed at the centre of each element, so the points used for
experimental and numerical results are not exactly the sames. For instance, strains at the
middle of the bituminous concrete are mesured at r = 0 and z = −4 by the lavoc, and
computed at r = 1 and z = −4 by the program (coordinates are given in centimeters).

Figures 10 and 11 show radial and orthoradial strains on the surface of the bituminous
concrete for different values of the radius. In each case, the first point (r = 4.5 cm) has been
removed: the experimental data at that point seemed totally nonsensical. It may be due to the
position of the corresponding captors. And indeed, they were under the disc, so they might have
been damaged during the loading. As concerns the other captors, the program give fairly good
results, the different curves show the same order of strains and the same shape. The differences
in the numerical values can be explain as for figure 9: the experimental data represent strains
on the surface of the road, whereas the numerical data are computed at the center of the first
row of elements, that is at a depth of z = −1 cm.

Eventually, figures 12 and 13 show radial and orthoradial strains at the interface between the
bituminous concrete and the sand. Here, we can see that the program overestimates radial and
orthoradial strains for small radii (r = 0 and r = 4.5 cm), but gives good results for larger radii.
One shall notice that, in this case, the strains are taken at the same points for both numerical
and experimental results, that is exactly at the interface between bituminous concrete and sand,
but in the case of the simulation, with a hypothesis of perfect sticking between both materials,
which might explain the differences observed for small radii.

5 Conclusion

In order to model the thermoviscoplastic behaviour of bituminous concrete, a tensorial consti-
tutive equation has been stated on the basis of one-dimensional relations coming from experi-
mental results obtained at the lgm of the entpe, and then implemented in the finite element
program elfimth developed in previous works for the numerical resolution of boundary value
problems in thermomechanics. That implementation was carried out by using two different
time-discrete schemes for the numerical integration of the constitutive equations considered
over finite time steps. A set of numerical simulations of homogeneous triaxial tests has shown
the good properties of these schemes when compared with the classical fully explicit Euler one.
The resulting finite element program was also used to simulate a real size experiment performed
at the lavoc of the epfl. The comparison between numerical results and experimental data
shows a fair agreement for that more complex and realistic problem, even if some discrepancies
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can be observed. The future steps of the work presented in this paper will include27 the bringing
into play, for the constitutive equations considered, of an original time-discrete scheme recently
developed for linear and non-linear viscoelastic models,21, 22 a more detailed study of the vari-
ous time-discrete schemes implemented in the finite element program elfimth, the numerical
simulations of the others stages of the thermomechanical loadings performed on the real-size
road structure of the lavoc, and the study of the influence of those time-discrete schemes on
the corresponding numerical results.
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1989.

24. P. Royis and al. Modélisation numérique des enrobés bitumineux. In F. Darve, editor,
Rapport scientifique 1991 de l’Euro-Greco Géomatériaux, pages 19–38, 1991.
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Notations

ROMAN TYPE
Notation Meaning

A fourth-order tensor binding σ and s
b field of body forces per unit volume
C cohesion of the sands
cp compactness of the bituminous concrete
C tensor of elastic compliances

C1, C2, C3, C4 four scalar functions of ν∞
cT heat capacity at constant volume

dε̇(vp) direction of ε̇(vp)

ds direction of s
e(tol) threshold of convergence
E Young modulus of the elastic part of the bituminous concrete behaviour
E0 initial tangent modulus of the sands
F global force applied on the disc
g field of stress vectors prescribed on Γ5(tn)

Gnx gradient tensor of Hnx

G1, G2, G3 fourth-order tensors, the sum of which contributes to Gnx

hT convective suface heat transfer coefficient
Hnx constitutive function binding σn(x), Hnx and εn(x)
Hnx memory parameters of the bituminous concrete

I1, I2, I3 scalar invariants of σ
I2 second-order unit tensor
I4 fourth-order unit tensor
n outer unit normal to Γ

(Pnv) weak formulation of the time-discretized mechanical problem relating to tn
(Pnh) finite element approximation of (Pnv)(
P

(r)
nh

)
linearization of (Pnh) relating to iteration (r)

q vectorial field of heat flux
Q field of internal heat generation per unit volume

(Qn) time-discretized thermal problem relating to tn
(Qnv) weak formulation of (Qn)
(Qnh) finite element approximation of (Qnv)(
Q

(r)
nh

)
linearization of (Qnh) relating to iteration (r)

s deviatoric part of the stress tensor σ
S area of the discs

t, tn time, time values
t unit vector directly orthogonal to the normal n
T temperature
Ti temperature prescribed on Γ1(tn)

T (r)
n solution of

(
Q

(r)
nh

)
Ta temperature of the ambient medium
u field of displacements
ui field of displacements prescribed on Γ4(tn)

u(r)
n solution of

(
P

(r)
nh

)
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ROMAN TYPE (continued)
Notation Meaning

V Sobolev space (H1(Ω))
3

Vh finite element space, subset of Vn

Vn {v ∈ V,v|Γ4(tn) = 0}
W Sobolev space H1(Ω)
Wh finite element space, subset of Wn

Wn {w ∈ W |w|Γ1(tn) = 0}
Y Heaviside function

GREEK TYPE
Notation Meaning

α(T ) coefficient of thermal expansion
αc, αt positive constants defining the viscoplastic criterion
β, γ scalar functions of T and cp

δ scalar function of T
∆tn time increment
ε linearized tensorial field of small strains
ε̇ strain rate tensor
ε̇u unit of strain rate
ε̇(e) elastic component of ε̇
ε̇(th) thermal component of ε̇
ε̇(vp) viscoplastic component of ε̇

Γ boundary of Ω
Γ1(tn) part of Γ where the temperature is prescribed at time tn
Γ2(tn) part of Γ where the heat flux per unit area is prescribed at time tn
Γ3(tn) part of Γ where the heat flux is governed by convection at time tn
Γ4(tn) part of Γ where the displacement is prescribed at time tn
Γ5(tn) part of Γ where the stress vector is prescribed at time tn

λT thermal conductivity
ν Poisson ration of the elastic part of the bituminous concrete behaviour
ν0 initial Poisson ratio for the sands
νa tangent Poisson ratio at plastic flow in compression for the sands
ν∞ Poisson ratio at viscoplastic flow in compression for the bituminous concrete
ϕ heat flux per unit area prescribed on Γ2(tn)
ψ friction angle for the sands
φ Lode angle
Ω materially simple continuum, open region of IR3

ρ mass density
σ tensorial field of the Cauchy stresses
σu unit of stress

σ1, σ2, σ3 principal stresses

σ
(c)
1 breaking axial stress for axisymmetric triaxial tests in compression

σ
(cr)
1 residual axial stress after relaxation for axisymmetric triaxial tests

in compression
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Figure 5: Relative error (ε̇22 = 0.25 %min−1)
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Figure 6: Boundary conditions and mesh for the road structure
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Figure 7: Comparison between numerical and experimental results for the first phase
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Figure 8: Global force applied on the disc
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Figure 9: Radial strains εrr under the axis of loading
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Figure 10: Radial strains εrr on the surface of the road
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Figure 11: Orthoradial strains εθθ on the surface of the road
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Figure 12: Radial strains εrr between bituminous concrete and sand
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Figure 13: Orthoradial strains εθθ between bituminous concrete and sand


